A159288
Expansion of (1 + x + x^2)/(1 - x^2 - 2*x^3).
Original entry on oeis.org
1, 1, 2, 3, 4, 7, 10, 15, 24, 35, 54, 83, 124, 191, 290, 439, 672, 1019, 1550, 2363, 3588, 5463, 8314, 12639, 19240, 29267, 44518, 67747, 103052, 156783, 238546, 362887, 552112, 839979, 1277886, 1944203, 2957844, 4499975, 6846250, 10415663
Offset: 0
-
I:=[1, 1, 2]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Jun 27 2018
-
CoefficientList[Series[(1+x+x^2)/(1-x^2-2x^3),{x,0,50}],x] (* Harvey P. Dale, Mar 09 2011 *)
LinearRecurrence[{0, 1, 2}, {1, 1, 2}, 50] (* G. C. Greubel, Jun 27 2018 *)
-
a(n)=([0,1,0; 0,0,1; 2,1,0]^n*[1;1;2])[1,1] \\ Charles R Greathouse IV, Aug 27 2016
-
Vec((1 + x + x^2) / (1 - x^2 - 2*x^3) + O(x^40)) \\ Colin Barker, Apr 29 2019
A159287
Expansion of x^2/(1-x^2-2*x^3).
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 1, 4, 5, 6, 13, 16, 25, 42, 57, 92, 141, 206, 325, 488, 737, 1138, 1713, 2612, 3989, 6038, 9213, 14016, 21289, 32442, 49321, 75020, 114205, 173662, 264245, 402072, 611569, 930562, 1415713, 2153700, 3276837, 4985126, 7584237, 11538800
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Creighton Dement, Online Floretion Multiplier.
- Yüksel Soykan, A Study on Generalized Jacobsthal-Padovan Numbers, Earthline Journal of Mathematical Sciences (2020) Vol. 4, No. 2, 227-251.
- Index entries for linear recurrences with constant coefficients, signature (0,1,2).
-
I:=[0,0,1]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 27 2018
-
LinearRecurrence[{0, 1, 2}, {0, 0, 1}, 60] (* Vladimir Joseph Stephan Orlovsky, May 24 2011 *)
CoefficientList[Series[x^2/(1-x^2-2x^3),{x,0,50}],x] (* Harvey P. Dale, May 29 2021 *)
-
a(n)=([0,1,0; 0,0,1; 2,1,0]^n*[0;0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A107852
Expansion of -x*(x^2+1)*(x+1)^2/((2*x^3+x^2-1)*(x^4+1)).
Original entry on oeis.org
0, 1, 2, 3, 6, 7, 10, 17, 22, 37, 58, 83, 134, 199, 298, 465, 694, 1061, 1626, 2451, 3750, 5703, 8650, 13201, 20054, 30501, 46458, 70611, 107462, 163527, 248682, 378449, 575734, 875813, 1332634, 2027283, 3084262, 4692551, 7138826, 10861073
Offset: 0
-
CoefficientList[Series[-x(x^2+1)(x+1)^2/((2x^3+x^2-1)(x^4+1)),{x,0, 50}],x] (* or *) LinearRecurrence[ {0,1,2,-1,0,1,2},{0,1,2,3,6,7,10},50] (* Harvey P. Dale, May 03 2024 *)
-
a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 2,1,0,-1,2,1,0]^n*[0;1;2;3;6;7;10])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
concat(0, Vec(x*(1 + x)^2*(1 + x^2) / ((1 - x^2 - 2*x^3)*(1 + x^4)) + O(x^45))) \\ Colin Barker, Apr 30 2019
A107851
Expansion of g.f. x*(-1-x-3*x^2-x^3+2*x^5)/((2*x^3+x^2-1)*(x^4+1)).
Original entry on oeis.org
0, 1, 1, 4, 4, 5, 9, 10, 18, 29, 41, 68, 100, 149, 233, 346, 530, 813, 1225, 1876, 2852, 4325, 6601, 10026, 15250, 23229, 35305, 53732, 81764, 124341, 189225, 287866, 437906, 666317, 1013641, 1542132, 2346276, 3569413, 5430537, 8261962, 12569362
Offset: 0
-
CoefficientList[Series[x(-1-x-3x^2-x^3+2x^5)/((2x^3+x^2-1)(x^4+1)), {x,0,50}],x] (* or *) LinearRecurrence[{0,1,2,-1,0,1,2},{0,1,1,4,4,5,9},51] (* Harvey P. Dale, Jul 19 2011 *)
-
a(n)=([0,1,0,0,0,0,0; 0,0,1,0,0,0,0; 0,0,0,1,0,0,0; 0,0,0,0,1,0,0; 0,0,0,0,0,1,0; 0,0,0,0,0,0,1; 2,1,0,-1,2,1,0]^n*[0;1;1;4;4;5;9])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A159285
Expansion of (1+3*x)/(1-x^2-2*x^3).
Original entry on oeis.org
1, 3, 1, 5, 7, 7, 17, 21, 31, 55, 73, 117, 183, 263, 417, 629, 943, 1463, 2201, 3349, 5127, 7751, 11825, 18005, 27327, 41655, 63337, 96309, 146647, 222983, 339265, 516277, 785231, 1194807, 1817785, 2765269, 4207399, 6400839, 9737937, 14815637
Offset: 0
-
I:=[1,3,1]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 27 2018
-
LinearRecurrence[{0, 1, 2}, {1, 3, 1}, 50] (* G. C. Greubel, Jun 27 2018 *)
CoefficientList[Series[(1+3x)/(1-x^2-2x^3),{x,0,40}],x] (* Harvey P. Dale, Jan 21 2019 *)
-
a(n)=([0,1,0; 0,0,1; 2,1,0]^n*[1;3;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A159286
Expansion of (x-1)^2/(1-x^2-2*x^3).
Original entry on oeis.org
1, -2, 2, 0, -2, 4, -2, 0, 6, -4, 6, 8, -2, 20, 14, 16, 54, 44, 86, 152, 174, 324, 478, 672, 1126, 1628, 2470, 3880, 5726, 8820, 13486, 20272, 31126, 47244, 71670, 109496, 166158, 252836, 385150, 585152
Offset: 0
-
I:=[1, -2, 2]; [n le 3 select I[n] else Self(n-2) + 2*Self(n-3): n in [1..30]]; // G. C. Greubel, Jun 27 2018
-
CoefficientList[Series[(x-1)^2/(1-x^2-2*x^3),{x,0,40}],x] (* or *) LinearRecurrence[{0,1,2},{1,-2,2},40] (* Harvey P. Dale, Apr 24 2011 *)
-
a(n)=([0,1,0; 0,0,1; 2,1,0]^n*[1;-2;2])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A198295
Riordan array (1, x*(1+x)/(1-x^3)).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 1, 3, 1, 0, 1, 2, 3, 4, 1, 0, 0, 4, 4, 6, 5, 1, 0, 1, 2, 9, 8, 10, 6, 1, 0, 1, 3, 9, 17, 15, 15, 7, 1, 0, 0, 6, 9, 24, 30, 26, 21, 8, 1, 0, 1, 3, 18, 26, 51, 51, 42, 28, 9, 1
Offset: 0
Triangle begins:
1
0, 1
0, 1, 1
0, 0, 2, 1
0, 1, 1, 3, 1
0, 1, 2, 3, 4, 1
0, 0, 4, 4, 6, 5, 1
0, 1, 2, 9, 8, 10, 6, 1
0, 1, 3, 9, 17, 15, 15, 7, 1
- A. Luzón, D. Merlini, M. A. Morón, R. Sprugnoli, Complementary Riordan arrays, Discrete Applied Mathematics, 172 (2014) 75-87.
A237714
Expansion of (1 + x)/(1 - x^2 - 2*x^5).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 3, 5, 5, 7, 11, 13, 21, 23, 35, 45, 61, 87, 107, 157, 197, 279, 371, 493, 685, 887, 1243, 1629, 2229, 2999, 4003, 5485, 7261, 9943, 13259, 17949, 24229, 32471, 44115, 58989, 80013, 107447, 144955, 195677, 262933, 355703, 477827, 645613, 869181, 1171479, 1580587
Offset: 0
-
For[j = 0, j < 5, j++, a[j] = 1]
For[j = 5, j < 51, j++, a[j] = 2 a[j - 5] + a[j - 2]]
Table[a[j], {j, 0, 50}]
CoefficientList[Series[(1 + x)/(1 - x^2 - 2 x^5), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 26 2014 *)
LinearRecurrence[{0,1,0,0,2},{1,1,1,1,1},70] (* Harvey P. Dale, Nov 24 2024 *)
-
Vec( (1 + x)/(1 - x^2 - 2*x^5) + O(x^66) ) \\ Joerg Arndt, Feb 24 2014
A172358
Triangle read by rows: T(n,k) = round(c(n)/(c(k)*c(n-k))) where c are partial products of a sequence defined in comments.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1, 1, 3, 9, 9, 3, 1, 1, 5, 15, 45, 15, 5, 1, 1, 9, 45, 135, 135, 45, 9, 1, 1, 11, 99, 495, 495, 495, 99, 11, 1, 1, 19, 209, 1881, 3135, 3135, 1881, 209, 19, 1, 1, 29, 551, 6061, 18183, 30305, 18183, 6061, 551, 29, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 1, 1, 1;
1, 3, 3, 3, 1;
1, 3, 9, 9, 3, 1;
1, 5, 15, 45, 15, 5, 1;
1, 9, 45, 135, 135, 45, 9, 1;
1, 11, 99, 495, 495, 495, 99, 11, 1;
1, 19, 209, 1881, 3135, 3135, 1881, 209, 19, 1;
1, 29, 551, 6061, 18183, 30305, 18183, 6061, 551, 29, 1;
-
f[n_, q_]:= f[n, q]= If[n<3, Fibonacci[n], f[n-2, q] + q*f[n-3, q]];
c[n_, q_]:= Product[f[j, q], {j,n}];
T[n_, k_, q_]:= Round[c[n, q]/(c[k, q]*c[n-k, q])];
Table[T[n, k, 2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, May 09 2021 *)
-
@CachedFunction
def f(n,q): return fibonacci(n) if (n<3) else f(n-2, q) + q*f(n-3, q)
def c(n,q): return product( f(j,q) for j in (1..n) )
def T(n,k,q): return round(c(n, q)/(c(k, q)*c(n-k, q)))
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 09 2021
Definition corrected to give integral terms by
G. C. Greubel, May 09 2021
A237716
7-distance Pell sequence.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 3, 5, 5, 7, 7, 9, 13, 15, 23, 25, 37, 39, 55, 65, 85, 111, 135, 185, 213, 295, 343, 465, 565, 735, 935, 1161, 1525, 1847, 2455, 2977, 3925, 4847, 6247, 7897, 9941, 12807, 15895, 20657, 25589, 33151, 41383, 53033, 66997
Offset: 0
a(7)=2a(0)+a(5)=3; a(8)=2a(1)+a(6)=3; a(9)=2a(2)+a(7)=5.
-
For[j = 0, j < 7, j++, a[j] = 1]
For[j = 7, j < 51, j++, a[j] = 2 a[j - 7] + a[j - 2]]
Table[a[j], {j, 0, 50}]
CoefficientList[Series[(1 + x)/(1 - x^2 - 2 x^7), {x,0,50}], x] (* G. C. Greubel, May 01 2017 *)
-
Vec((1+x)/(1-x^2-2*x^7)+O(x^99)) \\ Charles R Greathouse IV, Mar 06 2014
Showing 1-10 of 14 results.
Comments