cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A052951 Expansion of (1 + x - 2*x^2)/(1 - 2*x)^2.

Original entry on oeis.org

1, 5, 14, 36, 88, 208, 480, 1088, 2432, 5376, 11776, 25600, 55296, 118784, 253952, 540672, 1146880, 2424832, 5111808, 10747904, 22544384, 47185920, 98566144, 205520896, 427819008, 889192448, 1845493760, 3825205248, 7918845952
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Equals binomial transform of A042948 starting with "1": (1, 4, 5, 8, 9, 12, 13, ...) = terms > 0, == 0 or 1 mod 4. - Gary W. Adamson, Feb 07 2009

Crossrefs

Programs

  • GAP
    Concatenation([1], List([1..40], n-> 2^(n-1)*(2*n+3) )); # G. C. Greubel, Oct 21 2019
  • Magma
    I:=[1, 5, 14]; [n le 3 select I[n] else 4*Self(n-1)-4*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Jun 22 2012
    
  • Maple
    spec:= [S,{S=Prod(Union(Sequence(Union(Z,Z)),Z),Sequence(Union(Z,Z)))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
    seq(`if`(n=0, 1, 2^(n-1)*(2*n+3)), n=0..40); # G. C. Greubel, Oct 21 2019
  • Mathematica
    CoefficientList[Series[(1+x-2*x^2)/(1-2*x)^2,{x,0,40}],x] (* Vincenzo Librandi, Jun 22 2012 *)
    LinearRecurrence[{4,-4}, {1,5,14}, 40] (* G. C. Greubel, Oct 21 2019 *)
  • PARI
    x='x+O('x^40); Vec((1+x-2*x^2)/(1-2*x)^2) \\ Altug Alkan, Mar 03 2018
    
  • Sage
    [1]+[2^(n-1)*(2*n+3) for n in (1..40)] # G. C. Greubel, Oct 21 2019
    

Formula

G.f.: (1+x-2*x^2)/(1-2*x)^2.
a(n) = 4*(a(n-1) - a(n-2)).
a(n) = (n+1)*2^n + 2^(n-1), n > 0.
a(n) = A118413(n+1,n-1) for n > 2. - Reinhard Zumkeller, Apr 27 2006
E.g.f.: (1/2)*(-1 + exp(2*x)*(3 + 4*x)). - Stefano Spezia, Oct 22 2019
From Amiram Eldar, Oct 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 4*sqrt(2)*arcsinh(1) - 11/3.
Sum_{n>=0} (-1)^n/a(n) = 13/3 - 4*sqrt(2)*arccot(sqrt(2)). (End)