A052980 Expansion of (1 - x)/(1 - 2*x - x^3).
1, 1, 2, 5, 11, 24, 53, 117, 258, 569, 1255, 2768, 6105, 13465, 29698, 65501, 144467, 318632, 702765, 1549997, 3418626, 7540017, 16630031, 36678688, 80897393, 178424817, 393528322, 867954037, 1914332891, 4222194104, 9312342245, 20539017381, 45300228866
Offset: 0
References
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Kassie Archer and Noel Bourne, Pattern avoidance in compositions and powers of permutations, arXiv:2505.05218 [math.CO], 2025. See p. 4.
- Robert Brignall, Nik Ruškuc, and Vincent Vatter, Simple permutations: decidability and unavoidable substructures, Theoretical Computer Science 391 (2008), 150-163.
- Greg Dresden and Michael Tulskikh, Tilings of 2 X n boards with dominos and L-shaped trominos, Washington & Lee University (2021).
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1053
- Djamila Oudrar, Sur l'énumération de structures discrètes, une approche par la théorie des relations, Thesis (in French), arXiv:1604.05839 [math.CO], 2016.
- Djamila Oudrar and Maurice Pouzet, Profile and hereditary classes of ordered relational structures, arXiv preprint arXiv:1409.1108 [math.CO], 2014 [The first version of this document erroneously gives the A-number as A005298]
- Vincent Vatter, Small permutation classes, arXiv:0712.4006 [math.CO], 2007-2016.
- Index entries for linear recurrences with constant coefficients, signature (2,0,1).
Crossrefs
Programs
-
Magma
I:=[1,1,2]; [n le 3 select I[n] else 2*Self(n-1)+Self(n-3): n in [1..40]];
-
Magma
R
:=PowerSeriesRing(Integers(), 32); Coefficients(R!( (1 - x)/(1 - 2*x - x^3))); // Marius A. Burtea, Feb 14 2020 -
Maple
spec := [S,{S=Sequence(Prod(Union(Prod(Z,Z,Z),Z),Sequence(Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
-
Mathematica
CoefficientList[Series[(1 - x)/(1 - 2 x - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 05 2014 *)
-
PARI
Vec((1-x)/(1-2*x-x^3)+O(x^99)) \\ Charles R Greathouse IV, Nov 20 2011
Formula
Recurrence: a(0)=1, a(1)=1, a(2)=2; thereafter a(n) = 2*a(n-1)+a(n-3).
a(n) = Sum(1/59*(4+3*_alpha^2+17*_alpha)*_alpha^(-1-n), _alpha = RootOf(-1+2*_Z+_Z^3)).
Let u1 = 2.20556943... denote the real root of x^3-2*x^2-1. There is an explicit constant c1 = 0.460719842... such that for n>0, a(n) = nearest integer to c1*u1^n. - N. J. A. Sloane, Nov 07 2016
a(2n) = a(n)^2 - a(n-1)^2 + (1/2)*(a(n+2) - a(n+1) - a(n))^2. - Greg Dresden and Michael Tulskikh, Aug 20 2019
a(n) = 2^(n-1) + Sum_{i=3..n}(2^(n-i)*a(i-3)). - Greg Dresden, Aug 27 2019
a(n+1) = (Sum_{i >= 0} 2^(n-3i-2)*(4*binomial(n-2i, i) + binomial(n-2i-2, i))). - Michael Tulskikh, Feb 14 2020
Comments