A053074 Primes p such that p-24, p and p+24 are consecutive primes.
16787, 40063, 42533, 96377, 98597, 104207, 119267, 123887, 160117, 161807, 169283, 181813, 185267, 208553, 209743, 232777, 235723, 243367, 246073, 260363, 261823, 270097, 295387, 295727, 302483, 315223, 331423, 362027, 364103, 373693
Offset: 1
Examples
40063 is separated from both the next lower prime and the next higher prime by 24; 104207 - 24 = 104183 is prime, 104207 + 24 = 104231 is prime, and 104207 is the only prime between 104183 and 104231.
Links
- Zak Seidov, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A052190.
Programs
-
Maple
for i from 1 by 1 to 40000 do if ithprime(i+1) = ithprime(i) +24 and ithprime(i+2) = ithprime(i) + 48 then print(ithprime(i+1)); fi; od; # Zerinvary Lajos, May 04 2007
-
Mathematica
lst={};Do[p=Prime[n];If[p-Prime[n-1]==Prime[n+1]-p==6*4,AppendTo[lst,p]],{n,2,8!}];lst (* Vladimir Joseph Stephan Orlovsky, May 20 2010 *) Transpose[Select[Partition[Prime[Range[40000]],3,1],Differences[#]=={24,24}&]][[2]] (* Harvey P. Dale, May 20 2014 *)
Formula
a(n) = A052190(n) + 24. - Sean A. Irvine, Dec 06 2021
Extensions
Edited by N. J. A. Sloane, Jul 03 2008 at the suggestion of R. J. Mathar
Edited by Jon E. Schoenfield, Jan 09 2015
Comments