cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053109 Expansion of 1/(1-10*x)^10.

Original entry on oeis.org

1, 100, 5500, 220000, 7150000, 200200000, 5005000000, 114400000000, 2431000000000, 48620000000000, 923780000000000, 16796000000000000, 293930000000000000, 4974200000000000000, 81719000000000000000
Offset: 0

Views

Author

Keywords

Comments

This is the tenth member of the k-family of sequences a(k,n) := k^n*binomial(n+k-1,k-1) starting with A000012 (powers of 1), A001787(n+1), A027472(n+3), A038846, A036071, A036084, A036226, A053107-9 for k=1..10.

Programs

  • GAP
    List([0..15],n->10^n*Binomial(n+9,9)); # Muniru A Asiru, Aug 16 2018
  • Magma
    [10^n*Binomial(n+9, 9): n in [0..30]]; // G. C. Greubel, Aug 16 2018
    
  • Maple
    seq(coeff(series(1/(1-10*x)^10, x, n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Aug 16 2018
  • Mathematica
    CoefficientList[Series[1/(1-10x)^10,{x,0,20}],x] (* or *) Table[10^n Binomial[n+9,9],{n,0,20}] (* Harvey P. Dale, May 19 2011 *)
  • PARI
    vector(30,n,n--; 10^n*binomial(n+9, 9)) \\ G. C. Greubel, Aug 16 2018
    
  • Sage
    [lucas_number2(n, 10, 0)*binomial(n,9)/10 ^9 for n in range(9, 24)] # Zerinvary Lajos, Mar 13 2009
    

Formula

a(n) = 10^n*binomial(n+9, 9);
G.f.: 1/(1-10*x)^10.