A053122 Triangle of coefficients of Chebyshev's S(n,x-2) = U(n,x/2-1) polynomials (exponents of x in increasing order).
1, -2, 1, 3, -4, 1, -4, 10, -6, 1, 5, -20, 21, -8, 1, -6, 35, -56, 36, -10, 1, 7, -56, 126, -120, 55, -12, 1, -8, 84, -252, 330, -220, 78, -14, 1, 9, -120, 462, -792, 715, -364, 105, -16, 1, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 1, 11, -220, 1287, -3432, 5005, -4368, 2380, -816, 171, -20
Offset: 0
Examples
The triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 0: 1 1: -2 1 2: 3 -4 1 3: -4 10 -6 1 4: 5 -20 21 -8 1 5: -6 35 -56 36 -10 1 6: 7 -56 126 -120 55 -12 1 7: -8 84 -252 330 -220 78 -14 1 8: 9 -120 462 -792 715 -364 105 -16 1 9: -10 165 -792 1716 -2002 1365 -560 136 -18 1 ... Reformatted and extended by _Wolfdieter Lang_, Nov 13 2012 E.g., fourth row (n=3) {-4,10,-6,1} corresponds to the polynomial S(3,x-2) = -4+10*x-6*x^2+x^3. From _Wolfdieter Lang_, Nov 13 2012: (Start) Recurrence: a(5,1) = 35 = 1*5 + (-2)*(-20) -1*(10). Recurrence from Z-sequence [-2,-1,-2,-5,...]: a(5,0) = -6 = (-2)*5 + (-1)*(-20) + (-2)*21 + (-5)*(-8) + (-14)*1. Recurrence from A-sequence [1,-2,-1,-2,-5,...]: a(5,1) = 35 = 1*5 + (-2)*(-20) + (-1)*21 + (-2)*(-8) + (-5)*1. (End) E.g., the fourth row (n=3) {-4,10,-6,1} corresponds also to the polynomial S(7,x)/x = -4 + 10*x^2 - 6*x^4 + x^6. - _Wolfdieter Lang_, Dec 17 2012 Boas-Buck type recurrence: -56 = a(5, 2) = 2*(-1*1 + 1*(-6) - 1*21) = -2*28 = -56. - _Wolfdieter Lang_, Jun 03 2020
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 62.
- Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S.: ISBN 0-8218-2848-7, 1978, p. 463.
Links
- T. D. Noe, Rows n=0..50 of triangle, flattened
- Wolfdieter Lang, First rows of the triangle.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- P. Barry, Symmetric Third-Order Recurring Sequences, Chebyshev Polynomials, and Riordan Arrays, JIS 12 (2009) 09.8.6.
- Naiomi T. Cameron and Asamoah Nkwanta, On some (pseudo) involutions in the Riordan group, J. of Integer Sequences, 8(2005), 1-16.
- P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014 (p. 10). - _Tom Copeland_, Oct 11 2014
- Pentti Haukkanen, Jorma Merikoski, Seppo Mustonen, Some polynomials associated with regular polygons, Acta Univ. Sapientiae, Mathematica, 6, 2 (2014) 178-193.
- Eric Weisstein's World of Mathematics, Cartan Matrix
- Eric Weisstein's World of Mathematics, Dynkin Diagram
- Index entries for sequences related to Chebyshev polynomials.
Crossrefs
Programs
-
Maple
seq(seq((-1)^(n+m)*binomial(n+m+1,2*m+1),m=0..n),n=0..10); # Robert Israel, Oct 15 2014 # Uses function PMatrix from A357368. Adds a row above and a column to the left. PMatrix(10, n -> -(-1)^n*n); # Peter Luschny, Oct 07 2022
-
Mathematica
T[n_, m_, d_] := If[ n == m, 2, If[n == m - 1 || n == m + 1, -1, 0]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; a = Join[M[1], Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]; Flatten[a] (* Roger L. Bagula, May 23 2007 *) (* Alternative code for the matrices from MathWorld: *) sln[n_] := 2IdentityMatrix[n] - PadLeft[PadRight[IdentityMatrix[n - 1], {n, n - 1}], {n, n}] - PadLeft[PadRight[IdentityMatrix[n - 1], {n - 1, n}], {n, n}] (* Roger L. Bagula, May 23 2007 *)
-
Sage
@CachedFunction def A053122(n,k): if n< 0: return 0 if n==0: return 1 if k == 0 else 0 return A053122(n-1,k-1)-A053122(n-2,k)-2*A053122(n-1,k) for n in (0..9): [A053122(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
Formula
a(n, m) := 0 if n
a(n, m) = -2*a(n-1, m) + a(n-1, m-1) - a(n-2, m), a(n, -1) := 0 =: a(-1, m), a(0, 0)=1, a(n, m) := 0 if n
O.g.f. for m-th column (signed triangle): ((x/(1+x)^2)^m)/(1+x)^2.
From Jianing Song, Jun 21 2022: (Start)
T(n,k) = [x^k]f_n(x), where f_{-1}(x) = 0, f_0(x) = 1, f_n(x) = (x-2)*f_{n-1}(x) - f_{n-2}(x) for n >= 2.
f_n(x) = (((x-2+sqrt(x^2-4*x))/2)^(n+1) - ((x-2-sqrt(x^2-4*x))/2)^(n+1))/sqrt(x^2-4x).
The roots of f_n(x) are 2 + 2*cos(k*Pi/(n+1)) = 4*(cos(k*Pi/(2*n+2)))^2 for 1 <= k <= n. (End)
Comments