cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053128 Binomial coefficients C(2*n-5,6).

Original entry on oeis.org

7, 84, 462, 1716, 5005, 12376, 27132, 54264, 100947, 177100, 296010, 475020, 736281, 1107568, 1623160, 2324784, 3262623, 4496388, 6096454, 8145060, 10737573, 13983816, 18009460, 22957480, 28989675, 36288252, 45057474, 55525372, 67945521, 82598880, 99795696
Offset: 6

Views

Author

Keywords

Comments

a(n) = A053123(n,6), n >= 6; a(n) = 0, n=0..5, (seventh column of shifted Chebyshev's S-triangle, decreasing order).

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Programs

  • Magma
    [Binomial(2*n-5,6): n in [6..40]]; // Vincenzo Librandi, Oct 07 2011
    
  • Mathematica
    Table[Binomial[2*n-5,6], {n,6,50}] (* G. C. Greubel, Aug 26 2018 *)
  • PARI
    for(n=6,50, print1(binomial(2*n-5,6), ", ")) \\ G. C. Greubel, Aug 26 2018

Formula

a(n) = binomial(2*n-5, 6) if n >= 6 else 0.
G.f.: (7+35*x+21*x^2+x^3)/(1-x)^7.
E.g.f.: (18900 - 16380*x + 6975*x^2 - 1935*x^3 + 390*x^4 - 60*x^5 + 8*x^6)*exp(x)/90. - G. C. Greubel, Aug 26 2018
a(n) = (n-5)*(n-4)*(n-3)*(2*n-9)*(2*n-7)*(2*n-5)/90. - Wesley Ivan Hurt, Mar 25 2020
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=6} 1/a(n) = 667/10 - 96*log(2).
Sum_{n>=6} (-1)^n/a(n) = 273/10 - 6*Pi - 12*log(2). (End)