cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000579 Figurate numbers or binomial coefficients C(n,6).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5005, 8008, 12376, 18564, 27132, 38760, 54264, 74613, 100947, 134596, 177100, 230230, 296010, 376740, 475020, 593775, 736281, 906192, 1107568, 1344904, 1623160, 1947792, 2324784, 2760681, 3262623
Offset: 0

Views

Author

Keywords

Comments

Number of triangles (all of whose vertices lie inside the circle) formed when n points in general position on a circle are joined by straight lines - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 25 2000
Figurate numbers based on 6-dimensional regular simplex. According to Hyun Kwang Kim, it appears that every nonnegative integer can be represented as the sum of g = 13 of these numbers. - Jonathan Vos Post, Nov 28 2004
a(n) = A110555(n+1,6). - Reinhard Zumkeller, Jul 27 2005
a(n) is the number of terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7)^n. - Sergio Falcon, Feb 12 2007
Only prime in this sequence is 7. - Artur Jasinski, Dec 02 2007
6-dimensional triangular numbers, sixth partial sums of binomial transform of [1, 0, 0, 0, ...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009, R. J. Mathar, Jul 07 2009
The number of n-digit numbers the binary expansion of which contains 3 runs of 0's. Generally, the number of n-digit numbers with k runs of 0's is Sum_{i = k..n-k} binomial(i-1, k-1)*binomial(n-i, k) = C(n,2*k) = A034839(n,k) - Vladimir Shevelev, Jul 30 2010
The dimension of the space spanned by a 6-form that couples to M5-brane worldsheets wrapping 6-cycles inside tori (ref. Green,Miller,Vanhove eq. 3.10). - Stephen Crowley, Jan 09 2012
For a set of integers {1,2,...,n}, A253943(n) is the sum of the 2 smallest elements of each subset with 5 elements, which is 3*C(n+1,6) (for n>=5), hence A253943(n) = 3*a(n+1). - Serhat Bulut, Oktay Erkan Temizkan, Mar 13 2015
a(n) = fallfac(n, 6)/6! is also the number of independent components of an antisymmetric tensor of rank 6 and dimension n >= 1. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 645120. - Philippe A.J.G. Chevalier, Dec 28 2015
Coordination sequence for 6-dimensional cyclotomic lattice Z[zeta_7].

Examples

			a(9) = 84 = (1, 3, 3, 1) dot (1, 6, 15, 20) = (1 + 18 + 45 + 20). - _Gary W. Adamson_, Aug 02 2008
G.f. = x^6 + 7*x^7 + 28*x^8 + 84*x^9 + 210*x^10 + 462*x^11 + 924*x^12 + ...
For A = {1,2,3,4,5,6} subsets with 5 elements are {1,2,3,4,5}, {1,2,3,4,6}, {1,2,3,5,6}, {1,2,4,5,6}, {1,3,4,5,6}, {2,3,4,5,6}. Sum of 2 smallest elements of each subset: a(6) = (1+2) + (1+2) + (1+2) + (1+2) + (1+3) + (2+3) = 21 = 3*C(6+1,6) = 3*A000579(6+1). - _Serhat Bulut_, Oktay Erkan Temizkan, Mar 13 2015
a(7) = 7 from the seven independent components of an antisymmetric tensor A of rank 6 and dimension 7: A(1,2,3,4,5,6), A(1,2,3,4,5,7), A(1,2,3,4,6,7), A(1,2,3,5,6,7) A(1,2,4,5,6,7), A(1,2,3,5,6,7) and A(2,3,4,5,6,7). See a Dec 10 2015 comment. - _Wolfdieter Lang_, Dec 10 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Charles W. Trigg: Mathematical Quickies. New York: Dover Publications, Inc., 1985, p. 11, #32

Crossrefs

Cf. A053135, A053128, A000580 (partial sums), A000581, A000582, A000217, A000292, A000332, A000389 (first differences), A104712 (fifth column, k=6).

Programs

  • Magma
    [Binomial(n,6) : n in [0..50]]; // Wesley Ivan Hurt, Jul 13 2014
    
  • Maple
    A000579 := n->binomial(n,6);
    ZL := [S, {S=Prod(B,B,B,B,B,B,B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n), n=7..40); # Zerinvary Lajos, Mar 13 2007
    A000579:=-1/(z-1)**7; # Simon Plouffe in his 1992 dissertation, referring to offset 0.
    seq(binomial(n,6),n=0..33); # Zerinvary Lajos, Jun 16 2008
    G(x):=x^6*exp(x): f[0]:=G(x): for n from 1 to 39 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/6!,n=6..39); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    Table[Binomial[n, 6], {n, 6, 50}] (* Stefan Steinerberger, Apr 02 2006 *)
    Table[n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)/720, {n, 0, 100}] (* Artur Jasinski, Dec 02 2007 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,0,0,1},50] (* Harvey P. Dale, Dec 30 2012 *)
    CoefficientList[ Series[ -7x^6/(x-1)^7,{x, 0, 35}], x]/7 (* Robert G. Wilson v, Jan 29 2015 *)
  • PARI
    a(n)=binomial(n,6) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    A000579_list, m = [], [1, -5, 10, -10, 5, -1, 0]
    for _ in range(10**2):
        A000579_list.append(m[-1])
        for i in range(6):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016

Formula

G.f.: x^6/(1-x)^7.
E.g.f.: exp(x)*x^6/720.
a(n) = (n^6 - 15*n^5 + 85*n^4 - 225*n^3 + 274*n^2 - 120*n)/720.
Conjecture: a(n+3) = Sum_{0 <= k, L, m <= n; k + L + m <= n} k*L*m. - Ralf Stephan, May 06 2005
Convolution of the nonnegative numbers (A001477) with the hexagonal numbers (A000389). Also convolution of the triangular numbers (A000217) with the tetrahedral numbers (A000292). - Sergio Falcon, Feb 12 2007
a(n) = n*(n - 1)*(n - 2)*(n - 3)*(n - 4)*(n - 5)/720. - Artur Jasinski, Dec 02 2007, R. J. Mathar, Jul 07 2009
Equals binomial transform of [1, 6, 15, 20, 15, 6, 1, 0, 0, 0, ...]. - Gary W. Adamson, Aug 02 2008
a(0) = 0, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 0, a(5) = 0, a(6) = 1, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Dec 30 2012
Sum_{n >= 0} a(n)/n! = e/720. Sum_{n >= 5} a(n)/(n-5)! = 4051*e/720. See A067653 regarding the second ratio. - Richard R. Forberg, Dec 26 2013
Sum_{n >= 6} 1/a(n) = 6/5. - Hermann Stamm-Wilbrandt, Jul 13 2014
Sum_{n >= 6} (-1)^(n + 1)/a(n) = 192*log(2) - 661/5 = 0.8842586675... Also see A242023. - Richard R. Forberg, Aug 11 2014
a(n) = a(5-n) for all n in Z. - Michael Somos, Oct 07 2014
0 = a(n)*(+a(n+1) +5*a(n+2)) + a(n+1)*(-7*a(n+1) +a(n+2)) for all n in Z. - Michael Somos, Oct 07 2014
a(n) = 3*C(n+1,6) = 3*A000579(n+1). - Serhat Bulut, Oktay Erkan Temizkan, Mar 13 2015
a(n) = A000292(n-5)*A000292(n-2)/20. - R. J. Mathar, Nov 29 2015

Extensions

Some formulas that referred to other offsets corrected by R. J. Mathar, Jul 07 2009
I changed the offset to 0. This will require some further adjustments to the formulas. - N. J. A. Sloane, Aug 01 2010
Shevelev comment inserted and further adaptations to offset by R. J. Mathar, Aug 03 2010

A128908 Riordan array (1, x/(1-x)^2).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 4, 10, 6, 1, 0, 5, 20, 21, 8, 1, 0, 6, 35, 56, 36, 10, 1, 0, 7, 56, 126, 120, 55, 12, 1, 0, 8, 84, 252, 330, 220, 78, 14, 1, 0, 9, 120, 462, 792, 715, 364, 105, 16, 1, 0, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 22 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0,2,-1/2,1/2,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Row sums give A088305. - Philippe Deléham, Nov 21 2007
Column k is C(n,2k-1) for k > 0. - Philippe Deléham, Jan 20 2012
From R. Bagula's comment in A053122 (cf. Damianou link p. 10), this array gives the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
T is the convolution triangle of the positive integers (see A357368). - Peter Luschny, Oct 19 2022

Examples

			The triangle T(n,k) begins:
   n\k  0    1    2    3    4    5    6    7    8    9   10
   0:   1
   1:   0    1
   2:   0    2    1
   3:   0    3    4    1
   4:   0    4   10    6    1
   5:   0    5   20   21    8    1
   6:   0    6   35   56   36   10    1
   7:   0    7   56  126  120   55   12    1
   8:   0    8   84  252  330  220   78   14    1
   9:   0    9  120  462  792  715  364  105   16    1
  10:   0   10  165  792 1716 2002 1365  560  136   18    1
  ... reformatted by _Wolfdieter Lang_, Jul 31 2017
From _Peter Luschny_, Mar 06 2022: (Start)
The sequence can also be seen as a square array read by upwards antidiagonals.
   1, 1,   1,    1,    1,     1,     1,      1,      1, ...  A000012
   0, 2,   4,    6,    8,    10,    12,     14,     16, ...  A005843
   0, 3,  10,   21,   36,    55,    78,    105,    136, ...  A014105
   0, 4,  20,   56,  120,   220,   364,    560,    816, ...  A002492
   0, 5,  35,  126,  330,   715,  1365,   2380,   3876, ... (A053126)
   0, 6,  56,  252,  792,  2002,  4368,   8568,  15504, ... (A053127)
   0, 7,  84,  462, 1716,  5005, 12376,  27132,  54264, ... (A053128)
   0, 8, 120,  792, 3432, 11440, 31824,  77520, 170544, ... (A053129)
   0, 9, 165, 1287, 6435, 24310, 75582, 203490, 490314, ... (A053130)
    A27,A292, A389, A580,  A582, A1288, A10966, A10968, A165817       (End)
		

Crossrefs

Cf. A165817 (the main diagonal of the array).

Programs

  • Maple
    # Computing the rows of the array representation:
    S := proc(n,k) option remember;
    if n = k then 1 elif k < 0 or k > n then 0 else
    S(n-1, k-1) + 2*S(n-1, k) - S(n-2, k) fi end:
    Arow := (n, len) -> seq(S(n+k-1, k-1), k = 0..len-1):
    for n from 0 to 8 do Arow(n, 9) od; # Peter Luschny, Mar 06 2022
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> n); # Peter Luschny, Oct 19 2022
  • Mathematica
    With[{nmax = 10}, CoefficientList[CoefficientList[Series[(1 - x)^2/(1 - (2 + y)*x + x^2), {x, 0, nmax}, {y, 0, nmax}], x], y]] // Flatten (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, if(k==0, 0, binomial(n+k-1,2*k-1))), ", "))) \\ G. C. Greubel, Nov 22 2017
    
  • Python
    from functools import cache
    @cache
    def A128908(n, k):
        if n == k: return 1
        if (k <= 0 or k > n): return 0
        return A128908(n-1, k-1) + 2*A128908(n-1, k) - A128908(n-2, k)
    for n in range(10):
        print([A128908(n, k) for k in range(n+1)]) # Peter Luschny, Mar 07 2022
  • Sage
    @cached_function
    def T(k,n):
        if k==n: return 1
        if k==0: return 0
        return sum(i*T(k-1,n-i) for i in (1..n-k+1))
    A128908 = lambda n,k: T(k,n)
    for n in (0..10): print([A128908(n,k) for k in (0..n)]) # Peter Luschny, Mar 12 2016
    

Formula

T(n,0) = 0^n, T(n,k) = binomial(n+k-1, 2k-1) for k >= 1.
Sum_{k=0..n} T(n,k)*2^(n-k) = A002450(n) = (4^n-1)/3 for n>=1. - Philippe Deléham, Oct 19 2008
G.f.: (1-x)^2/(1-(2+y)*x+x^2). - Philippe Deléham, Jan 20 2012
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A001352(n), (-1)^(n+1)*A054888(n+1), (-1)^n*A008574(n), (-1)^n*A084103(n), (-1)^n*A084099(n), A163810(n), A000007(n), A088305(n) for x = -6, -5, -4, -3, -2, -1, 0, 1 respectively. - Philippe Deléham, Jan 20 2012
Riordan array (1, x/(1-x)^2). - Philippe Deléham, Jan 20 2012

A053129 Binomial coefficients C(2*n-6,7).

Original entry on oeis.org

8, 120, 792, 3432, 11440, 31824, 77520, 170544, 346104, 657800, 1184040, 2035800, 3365856, 5379616, 8347680, 12620256, 18643560, 26978328, 38320568, 53524680, 73629072, 99884400, 133784560, 177100560, 231917400, 300674088, 386206920, 491796152, 621216192
Offset: 7

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Programs

Formula

a(n) = binomial(2*n-6, 7) if n >= 7 else 0.
a(n) = -A053123(n,7), n >= 7; a(n) := 0, n=0..6, (eighth column of shifted Chebyshev's S-triangle, decreasing order).
a(n) = 8*A000973(n).
G.f.: (8+56*x+56*x^2+8*x^3)/(1-x)^8.
a(n) = (n-6)*(n-5)*(n-4)*(n-3)*(2*n-11)*(2*n-9)*(2*n-7)/315. - Wesley Ivan Hurt, Mar 25 2020
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=7} 1/a(n) = 777/5 - 224*log(2).
Sum_{n>=7} (-1)^(n+1)/a(n) = 441/10 - 14*Pi. (End)

A053135 Binomial coefficients C(2*n+6,6).

Original entry on oeis.org

1, 28, 210, 924, 3003, 8008, 18564, 38760, 74613, 134596, 230230, 376740, 593775, 906192, 1344904, 1947792, 2760681, 3838380, 5245786, 7059052, 9366819, 12271512, 15890700, 20358520, 25827165, 32468436, 40475358, 50063860, 61474519, 74974368, 90858768
Offset: 0

Views

Author

Keywords

Comments

Even-indexed members of seventh column of Pascal's triangle A007318.
Number of standard tableaux of shape (2n+1,1^6). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

  • Magma
    [Binomial(2*n+6, 6): n in [0..30]]; // G. C. Greubel, Sep 03 2018
  • Maple
    seq(binomial(2*n+6,6),n=0..40); # Nathaniel Johnston, May 14 2011
  • Mathematica
    Table[Binomial[2*n+6, 6], {n, 0, 30}] (* G. C. Greubel, Sep 03 2018 *)
  • PARI
    vector(30,n,n--; binomial(2*n+6, 6)) \\ G. C. Greubel, Sep 03 2018
    

Formula

G.f.: (1 + 21*x + 35*x^2 + 7*x^3)/(1-x)^7.
a(n) = binomial(2*n+6, 6) = A000579(2*n+6).
a(n) = A000384(n+1)*A000384(n+2)*A000384(n+3)/90. - Bruno Berselli, Nov 12 2014
E.g.f.: (90 + 2430*x + 6975*x^2 + 5655*x^3 + 1710*x^4 + 204*x^5 + 8*x^6)* exp(x)/90. - G. C. Greubel, Sep 03 2018
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=0} 1/a(n) = 96*log(2) - 131/2.
Sum_{n>=0} (-1)^n/a(n) = 23/2 - 6*Pi + 12*log(2). (End)

A292219 Triangle read by rows. A generalization of unsigned Lah numbers, called L[4,3].

Original entry on oeis.org

1, 6, 1, 60, 20, 1, 840, 420, 42, 1, 15120, 10080, 1512, 72, 1, 332640, 277200, 55440, 3960, 110, 1, 8648640, 8648640, 2162160, 205920, 8580, 156, 1, 259459200, 302702400, 90810720, 10810800, 600600, 16380, 210, 1, 8821612800, 11762150400, 4116752640, 588107520, 40840800, 1485120, 28560, 272, 1
Offset: 0

Views

Author

Wolfdieter Lang, Sep 23 2017

Keywords

Comments

For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[4,3], the Sheffer triangle ((1 - 4*t)^(-3/2), t/(1 - 4*t)). It is defined as transition matrix
risefac[4,3](x, n) = Sum_{m=0..n} L[4,3](n, m)*fallfac[4,3](x, m), where risefac[4,3](x, n) := Product_{0..n-1} (x + (3 + 4*j)) for n >= 1 and risefac[4,3](x, 0) := 1, and fallfac[4,3](x, n):= Product_{0..n-1} (x - (3 + 4*j)) for n >= 1 and fallfac[4,3](x, 0) := 1.
In matrix notation: L[4,3] = S1phat[4,3]*S2hat[4,3] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A225471 and A225469, respectively.
The a- and z-sequences for this Sheffer matrix have e.g.f.s Ea(t) = 1 + 4*t and Ez(t) = (1 + 4*t)*(1 - (1 + 4*t)^(-3/2))/t, respectively. That is, a = {1, 4, repeat(0)} and z(n) = 2*A292221(n). See the W. Lang link on a- and z-sequences there.
The inverse matrix T^(-1) = L^(-1)[4,3] is Sheffer ((1 + 4*t)^(-3/2), t/(1 + 4*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[4,3](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[4,3](x, m), n >= 0.
Diagonal sequences have o.g.f. G(d, x) = A001813(d)*Sum_{m=0..d} A103327(d, m)*x^m/(1 - x)^(2*d + 1), for d >= 0 (d=0 main diagonal). G(d, x) generates {A001813(d)*binomial(2*(m + d) + 1, 2*d)}{m >= 0}. See the second W. Lang link on how to compute o.g.f.s of diagonal sequences of general Sheffer triangles. - _Wolfdieter Lang, Oct 12 2017

Examples

			The triangle T(n, m) begins:
  n\m          0           1          2         3        4       5     6   7  8
  0:           1
  1:           6           1
  2:          60          20          1
  3:         840         420         42         1
  4:       15120       10080       1512        72        1
  5:      332640      277200      55440      3960      110       1
  6:     8648640     8648640    2162160    205920     8580     156     1
  7:   259459200   302702400   90810720  10810800   600600   16380   210   1
  8:  8821612800 11762150400 4116752640 588107520 40840800 1485120 28560 272  1
  ...
Recurrence from a-sequence: T(4, 2) = (4/2)*T(3, 1) + 4*4*T(3, 2) = 2*420 + 16*42 = 1512.
Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2)+ z(3)*T(3, 3)) = 4*(6*840 - 6*420 + 40*42 -420*1) = 15120.
Meixner type identity for n = 2: (D_x - 4*(D_x)^2)*(60 + 20*x + 1*x^2 ) = (20 + 2*x) - 4*2 = 2*(6 + x).
Sheffer recurrence for R(3, x): [(6 + x) + 8*(3 + x)*D_x + 16*x*(D_x)^2] (60 + 20*x + 1*x^2) = (6 + x)*(60 + 20*x + x^2) + 8*(3 + x)*(20 + 2*x) + 16*2*x = 840 + 420*x + 42*x^2 + x^3 = R(3, x).
Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (2*4!/2)*(3 + 2*2)*(1*42/3! + 4*1/2!) = 1512.
Diagonal sequence d = 2: {60, 420, 1512, ...} has o.g.f. 12*(5 + 10*x + x^2)/(1 - x)^5 (see A001813(2) and row n=2 of A103327) generating {12*binomial(2*(m + 2) + 1, 4)}_{m >= 0}. - _Wolfdieter Lang_, Oct 12 2017
		

References

  • Steven Roman, The Umbral Calculus, Academic press, Orlando, London, 1984, p. 50.

Crossrefs

Cf. A225469, A225471, A271703 L[1,0], A286724 L[2,1], A290596 L[3,1], A290597 L[3,2], A048854 L[4,1], A292221, A103327,
Diagonal sequences: A000012, 2*A014105(m+1), 12*A053126(m+4), 120*A053128(m+6), A053130(n+8), ... - Wolfdieter Lang, Oct 12 2017

Formula

T(n, m) = L[4,3](n,m) = Sum_{k=m..n} A225471(n, k)*A225469(k, m), 0 <= m <= n.
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 4*t)^(-3/2)*exp(x*t/(1 - 4*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 4*t)^(-3/2)*(t/(1 - 4*t))^m/m!, m >= 0.
Three term recurrence for column entries k >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 4*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0}^(n-1) z(j)*T(n-1, j), n >= 1, T(0, 0) = 0, from the a-sequence {1, 4 repeat(0)} and z(j) = 2*A292221(j) (see above).
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(4*n - 1)*T(n-1, m) - 8*(n-1)*(2*n - 1)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 4*D_x)) * R(n, x) = n * R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-4)^k*{D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(6 + x)*1 + 8*(3 + x)*D_x + 16*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (2*n!/(n-m))*(3 + 2*m)*Sum_{p=0..n-1-m} 4^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
Explicit form (from the o.g.f.s of diagonal sequences): ((2*(n-m))!/(n-m)!)*binomial(2*n + 1, 2*(n-m)), n >= m >= 0, and vanishing for n < m. - Wolfdieter Lang, Oct 12 2017

A196790 Binomial coefficients C(2*n-9,10).

Original entry on oeis.org

11, 286, 3003, 19448, 92378, 352716, 1144066, 3268760, 8436285, 20030010, 44352165, 92561040, 183579396, 348330136, 635745396, 1121099408, 1917334783, 3190187286, 5178066751, 8217822536, 12777711870, 19499099620, 29248649430, 43183019880, 62828356305, 90177170226
Offset: 10

Views

Author

Vincenzo Librandi, Oct 07 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(2*n-9,10): n in [10..40]];
  • Mathematica
    a[n_] := Binomial[2*n - 9, 10]; Array[a, 20, 10] (* Amiram Eldar, Oct 21 2022 *)

Formula

G.f.: x^10*(11+165*x+462*x^2+330*x^3+55*x^4+x^5) / (1-x)^11. - R. J. Mathar, Oct 08 2011
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=10} 1/a(n) = 447187/252 - 2560*log(2).
Sum_{n>=10} (-1)^n/a(n) = 40*Pi + 80*log(2) - 6517/36. (End)
Showing 1-6 of 6 results.