cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A000580 a(n) = binomial coefficient C(n,7).

Original entry on oeis.org

1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 11440, 19448, 31824, 50388, 77520, 116280, 170544, 245157, 346104, 480700, 657800, 888030, 1184040, 1560780, 2035800, 2629575, 3365856, 4272048, 5379616, 6724520, 8347680, 10295472
Offset: 7

Views

Author

Keywords

Comments

Figurate numbers based on 7-dimensional regular simplex. According to Hyun Kwang Kim, it appears that every nonnegative integer can be represented as the sum of g = 15 of these numbers. - Jonathan Vos Post, Nov 28 2004
a(n) is the number of terms in the expansion of (Sum_{i=1..8} a_i)^n. - Sergio Falcon, Feb 12 2007
Product of seven consecutive numbers divided by 7!. - Artur Jasinski, Dec 02 2007
In this sequence there are no primes. - Artur Jasinski, Dec 02 2007
For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 6 elements, which is 3*C(n+1,7) (for n>=6), hence a(n) = 3*C(n+1,7) = 3*A000580(n+1). - Serhat Bulut, Mar 13 2015
Partial sums of A000579. In general, the iterated sums S(m, n) = Sum_{j=1..n} S(m-1, j) with input S(1, n) = A000217(n) = 1 + 2 + ... + n are S(m, n) = risefac(n, m+1)/(m+1)! = binomial(n+m, m+1) = Sum_{k = 1..n} risefac(k, m)/m!, with the rising factorials risefac(x, m):= Product_{j=0..m-1} (x+j), for m >= 1. Such iterated sums of arithmetic progressions have been considered by Narayana Pandit (see The MacTutor History of Mathematics archive link, and the Gottwald et al. reference, p. 338, where the name Narayana Daivajna is also used). - Wolfdieter Lang, Mar 20 2015
a(n) = fallfac(n,7)/7! = binomial(n, 7) is also the number of independent components of an antisymmetric tensor of rank 7 and dimension n >= 7 (for n=1..6 this becomes 0). Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
From Juergen Will, Jan 02 2016: (Start)
Number of compositions (ordered partitions) of n+1 into exactly 8 parts.
Number of weak compositions (ordered weak partitions) of n-7 into exactly 8 parts. (End)

Examples

			For A={1,2,3,4,5,6,7}, subsets with 6 elements are {1,2,3,4,5,6}, {1,2,3,4,5,7}, {1,2,3,4,6,7}, {1,2,3,5,6,7}, {1,2,4,5,6,7}, {1,3,4,5,6,7}, {2,3,4,5,6,7}.
Sum of 2 smallest elements of each subset: a(7) = (1+2)+(1+2)+(1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 24 = 3*C(7+1,7) = 3*A000580(7+1). - _Serhat Bulut_, Mar 13 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • S. Gottwald, H.-J. Ilgauds and K.-H. Schlote (eds.), Lexikon bedeutender Mathematiker (in German), Bibliographisches Institut Leipzig, 1990.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n,7): n in [7..40]]; // Vincenzo Librandi, Mar 21 2015
    
  • Maple
    ZL := [S, {S=Prod(B,B,B,B,B,B,B,B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n), n=8..38); # Zerinvary Lajos, Mar 13 2007
    A000580:=1/(z-1)**8; # Simon Plouffe in his 1992 dissertation, offset 0.
    seq(binomial(n+7,7)*1^n,n=0..30); # Zerinvary Lajos, Jun 23 2008
    G(x):=x^7*exp(x): f[0]:=G(x): for n from 1 to 38 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/7!,n=7..37); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    Table[n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)/7!, {n, 1, 100}] (* Artur Jasinski, Dec 02 2007 *)
    Binomial[Range[7,40],7] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{1,8,36,120,330,792,1716,3432},40] (* Harvey P. Dale, Nov 28 2011 *)
    CoefficientList[Series[1 / (1-x)^8, {x, 0, 33}], x] (* Vincenzo Librandi, Mar 21 2015 *)
  • PARI
    a(n)=binomial(n,7) \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: x^7/(1-x)^8.
a(n) = (n^7 - 21*n^6 + 175*n^5 - 735*n^4 + 1624*n^3 - 1764*n^2 + 720*n)/5040.
a(n) = -A110555(n+1,7). - Reinhard Zumkeller, Jul 27 2005
Convolution of the nonnegative numbers (A001477) with the sequence A000579. Also convolution of the triangular numbers (A000217) with the sequence A000332. Also convolution of the sequence {1,1,1,1,...} (A000012) with the sequence A000579. Also self-convolution of the tetrahedral numbers (A000292). - Sergio Falcon, Feb 12 2007
a(n+4) = (1/3!)*(d^3/dx^3)S(n,x)|A049310.%20-%20_Wolfdieter%20Lang">{x=2}, n >= 3. One sixth of third derivative of Chebyshev S-polynomials evaluated at x=2. See A049310. - _Wolfdieter Lang, Apr 04 2007
a(n) = n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)/7!. - Artur Jasinski, Dec 02 2007, R. J. Mathar, Jul 07 2009
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) with a(7)=1, a(8)=8, a(9)=36, a(10)=120, a(11)=330, a(12)=792, a(13)=1716, a(14)=3432. - Harvey P. Dale, Nov 28 2011
a(n) = 3*C(n+1,7) = 3*A000580(n+1). - Serhat Bulut, Mar 13 2015
From Wolfdieter Lang, Mar 21 2015: (Start)
a(n) = A104712(n, 7), n >= 7.
a(n+6) = sum(A000579(j+5), j = 1..n), n >= 1. See the Mar 20 2015 comment above. (End)
Sum_{k >= 7} 1/a(k) = 7/6. - Tom Edgar, Sep 10 2015
Sum_{n>=7} (-1)^(n+1)/a(n) = A001787(7)*log(2) - A242091(7)/6! = 448*log(2) - 9289/30 = 0.8966035575... - Amiram Eldar, Dec 10 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 17 2000
Some formulas that referred to other offsets corrected by R. J. Mathar, Jul 07 2009

A128908 Riordan array (1, x/(1-x)^2).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 4, 1, 0, 4, 10, 6, 1, 0, 5, 20, 21, 8, 1, 0, 6, 35, 56, 36, 10, 1, 0, 7, 56, 126, 120, 55, 12, 1, 0, 8, 84, 252, 330, 220, 78, 14, 1, 0, 9, 120, 462, 792, 715, 364, 105, 16, 1, 0, 10, 165, 792, 1716, 2002, 1365, 560, 136, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 22 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows given by [0,2,-1/2,1/2,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
Row sums give A088305. - Philippe Deléham, Nov 21 2007
Column k is C(n,2k-1) for k > 0. - Philippe Deléham, Jan 20 2012
From R. Bagula's comment in A053122 (cf. Damianou link p. 10), this array gives the coefficients (mod sign) of the characteristic polynomials for the Cartan matrix of the root system A_n. - Tom Copeland, Oct 11 2014
T is the convolution triangle of the positive integers (see A357368). - Peter Luschny, Oct 19 2022

Examples

			The triangle T(n,k) begins:
   n\k  0    1    2    3    4    5    6    7    8    9   10
   0:   1
   1:   0    1
   2:   0    2    1
   3:   0    3    4    1
   4:   0    4   10    6    1
   5:   0    5   20   21    8    1
   6:   0    6   35   56   36   10    1
   7:   0    7   56  126  120   55   12    1
   8:   0    8   84  252  330  220   78   14    1
   9:   0    9  120  462  792  715  364  105   16    1
  10:   0   10  165  792 1716 2002 1365  560  136   18    1
  ... reformatted by _Wolfdieter Lang_, Jul 31 2017
From _Peter Luschny_, Mar 06 2022: (Start)
The sequence can also be seen as a square array read by upwards antidiagonals.
   1, 1,   1,    1,    1,     1,     1,      1,      1, ...  A000012
   0, 2,   4,    6,    8,    10,    12,     14,     16, ...  A005843
   0, 3,  10,   21,   36,    55,    78,    105,    136, ...  A014105
   0, 4,  20,   56,  120,   220,   364,    560,    816, ...  A002492
   0, 5,  35,  126,  330,   715,  1365,   2380,   3876, ... (A053126)
   0, 6,  56,  252,  792,  2002,  4368,   8568,  15504, ... (A053127)
   0, 7,  84,  462, 1716,  5005, 12376,  27132,  54264, ... (A053128)
   0, 8, 120,  792, 3432, 11440, 31824,  77520, 170544, ... (A053129)
   0, 9, 165, 1287, 6435, 24310, 75582, 203490, 490314, ... (A053130)
    A27,A292, A389, A580,  A582, A1288, A10966, A10968, A165817       (End)
		

Crossrefs

Cf. A165817 (the main diagonal of the array).

Programs

  • Maple
    # Computing the rows of the array representation:
    S := proc(n,k) option remember;
    if n = k then 1 elif k < 0 or k > n then 0 else
    S(n-1, k-1) + 2*S(n-1, k) - S(n-2, k) fi end:
    Arow := (n, len) -> seq(S(n+k-1, k-1), k = 0..len-1):
    for n from 0 to 8 do Arow(n, 9) od; # Peter Luschny, Mar 06 2022
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> n); # Peter Luschny, Oct 19 2022
  • Mathematica
    With[{nmax = 10}, CoefficientList[CoefficientList[Series[(1 - x)^2/(1 - (2 + y)*x + x^2), {x, 0, nmax}, {y, 0, nmax}], x], y]] // Flatten (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(if(n==0 && k==0, 1, if(k==0, 0, binomial(n+k-1,2*k-1))), ", "))) \\ G. C. Greubel, Nov 22 2017
    
  • Python
    from functools import cache
    @cache
    def A128908(n, k):
        if n == k: return 1
        if (k <= 0 or k > n): return 0
        return A128908(n-1, k-1) + 2*A128908(n-1, k) - A128908(n-2, k)
    for n in range(10):
        print([A128908(n, k) for k in range(n+1)]) # Peter Luschny, Mar 07 2022
  • Sage
    @cached_function
    def T(k,n):
        if k==n: return 1
        if k==0: return 0
        return sum(i*T(k-1,n-i) for i in (1..n-k+1))
    A128908 = lambda n,k: T(k,n)
    for n in (0..10): print([A128908(n,k) for k in (0..n)]) # Peter Luschny, Mar 12 2016
    

Formula

T(n,0) = 0^n, T(n,k) = binomial(n+k-1, 2k-1) for k >= 1.
Sum_{k=0..n} T(n,k)*2^(n-k) = A002450(n) = (4^n-1)/3 for n>=1. - Philippe Deléham, Oct 19 2008
G.f.: (1-x)^2/(1-(2+y)*x+x^2). - Philippe Deléham, Jan 20 2012
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A001352(n), (-1)^(n+1)*A054888(n+1), (-1)^n*A008574(n), (-1)^n*A084103(n), (-1)^n*A084099(n), A163810(n), A000007(n), A088305(n) for x = -6, -5, -4, -3, -2, -1, 0, 1 respectively. - Philippe Deléham, Jan 20 2012
Riordan array (1, x/(1-x)^2). - Philippe Deléham, Jan 20 2012

A053130 Binomial coefficients C(2*n-7,8).

Original entry on oeis.org

9, 165, 1287, 6435, 24310, 75582, 203490, 490314, 1081575, 2220075, 4292145, 7888725, 13884156, 23535820, 38608020, 61523748, 95548245, 145008513, 215553195, 314457495, 450978066, 636763050, 886322710, 1217566350, 1652411475, 2217471399, 2944827765, 3872894697
Offset: 8

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings).

Crossrefs

Programs

  • Magma
    [Binomial(2*n-7, 8): n in [8..50]]; // Vincenzo Librandi, Apr 07 2011
    
  • Mathematica
    Table[Binomial[2*n-7,8], {n,8,50}] (* G. C. Greubel, Aug 26 2018 *)
  • PARI
    for(n=8,50, print1(binomial(2*n-7,8), ", ")) \\ G. C. Greubel, Aug 26 2018

Formula

a(n) = binomial(2*n-7, 8) if n >= 8 else 0.
G.f.: (9+84*x+126*x^2+36*x^3+x^4)/(1-x)^9.
a(n) = A053123(n,8), n >= 8; a(n) := 0, n=0..7, (ninth column of shifted Chebyshev's S-triangle, decreasing order).
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=8} 1/a(n) = 37276/105 - 512*log(2).
Sum_{n>=8} (-1)^n/a(n) = 592/21 - 16*Pi + 32*log(2). (End)

A053136 Binomial coefficients C(2*n+7,7).

Original entry on oeis.org

1, 36, 330, 1716, 6435, 19448, 50388, 116280, 245157, 480700, 888030, 1560780, 2629575, 4272048, 6724520, 10295472, 15380937, 22481940, 32224114, 45379620, 62891499, 85900584, 115775100, 154143080, 202927725, 264385836, 341149446, 436270780, 553270671, 696190560
Offset: 0

Views

Author

Keywords

Comments

Even-indexed members of eighth column of Pascal's triangle A007318.
Number of standard tableaux of shape (2n+1,1^7). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

Formula

a(n) = binomial(2*n+7, 7) = A000580(2*n+7).
G.f.: (1 + 28*x + 70*x^2 + 28*x^3 + x^4)/(1-x)^8.
E.g.f.: (630 + 22050*x + 81585*x^2 + 87465*x^3 + 36960*x^4 + 6888*x^5 + 560*x^6 + 16*x^7)*exp(x)/630. - G. C. Greubel, Sep 03 2018
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=0} 1/a(n) = 224*log(2) - 4627/30.
Sum_{n>=0} (-1)^n/a(n) = 28*log(2) - 553/30. (End)

A000973 Fermat coefficients.

Original entry on oeis.org

1, 15, 99, 429, 1430, 3978, 9690, 21318, 43263, 82225, 148005, 254475, 420732, 672452, 1043460, 1577532, 2330445, 3372291, 4790071, 6690585, 9203634, 12485550, 16723070, 22137570, 28989675, 37584261, 48275865, 61474519
Offset: 8

Views

Author

Keywords

Comments

a(n) = A258708(n,n-8). - Reinhard Zumkeller, Jun 23 2015

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A053129.
Cf. A258708.

Programs

Formula

a(n) = binomial(2*n-8, 7)/8.
G.f.: (x^8)*(1+7*x+7*x^2+x^3)/(1-x)^8.
G.f.: A(x)= (1+7*x+7*x^2+x^3)/(x-1)^8 = 1 + 45*x/(G(0)-45*x), |x|<1; if |x|>1, G(0)=45*x;
G(k) = (k+1)*(2*k+3) + x*(k+5)*(2*k+9) - x*(k+1)*(k+6)*(2*k+3)*(2*k+11)/G(k+1); (continued fraction Euler's 1st kind, 1-step ). - Sergei N. Gladkovskii, Jun 15 2012

Extensions

More terms from David W. Wilson, Oct 11 2000

A196790 Binomial coefficients C(2*n-9,10).

Original entry on oeis.org

11, 286, 3003, 19448, 92378, 352716, 1144066, 3268760, 8436285, 20030010, 44352165, 92561040, 183579396, 348330136, 635745396, 1121099408, 1917334783, 3190187286, 5178066751, 8217822536, 12777711870, 19499099620, 29248649430, 43183019880, 62828356305, 90177170226
Offset: 10

Views

Author

Vincenzo Librandi, Oct 07 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(2*n-9,10): n in [10..40]];
  • Mathematica
    a[n_] := Binomial[2*n - 9, 10]; Array[a, 20, 10] (* Amiram Eldar, Oct 21 2022 *)

Formula

G.f.: x^10*(11+165*x+462*x^2+330*x^3+55*x^4+x^5) / (1-x)^11. - R. J. Mathar, Oct 08 2011
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=10} 1/a(n) = 447187/252 - 2560*log(2).
Sum_{n>=10} (-1)^n/a(n) = 40*Pi + 80*log(2) - 6517/36. (End)
Showing 1-6 of 6 results.