cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053132 One half of binomial coefficients C(2*n-4,5).

Original entry on oeis.org

3, 28, 126, 396, 1001, 2184, 4284, 7752, 13167, 21252, 32890, 49140, 71253, 100688, 139128, 188496, 250971, 329004, 425334, 543004, 685377, 856152, 1059380, 1299480, 1581255, 1909908, 2291058, 2730756, 3235501, 3812256, 4468464
Offset: 5

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a053132 n = a053132_list !! (n-5)
    a053132_list = f [1] $ drop 2 a000217_list where
       f xs ts'@(t:ts) = (sum $ zipWith (*) xs ts') : f (t:xs) ts
    -- Reinhard Zumkeller, Mar 03 2015
    
  • Magma
    [Binomial(2*n-4,5)/2: n in [5..40]]; // Vincenzo Librandi, Oct 07 2011
    
  • Mathematica
    Binomial[2*Range[5,40]-4,5]/2 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{3,28,126,396,1001,2184},40] (* Harvey P. Dale, Oct 25 2015 *)
  • PARI
    for(n=5,50, print1(binomial(2*n-4,5)/2, ", ")) \\ G. C. Greubel, Aug 26 2018

Formula

a(n) = binomial(2*n-4, 5)/2 if n >= 5 else 0.
G.f.: (x^5)*(3+10*x+3*x^2)/(1-x)^6.
a(n) = A053127(n)/2
a(n) = Sum_{k=1..n-4} (A000217(k)*A000217(2*n-k-7)). - Reinhard Zumkeller, Mar 03 2015
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=5} 1/a(n) = 335/6 - 80*log(2).
Sum_{n>=5} (-1)^(n+1)/a(n) = 85/6 - 20*log(2). (End)