A053132 One half of binomial coefficients C(2*n-4,5).
3, 28, 126, 396, 1001, 2184, 4284, 7752, 13167, 21252, 32890, 49140, 71253, 100688, 139128, 188496, 250971, 329004, 425334, 543004, 685377, 856152, 1059380, 1299480, 1581255, 1909908, 2291058, 2730756, 3235501, 3812256, 4468464
Offset: 5
Links
- Vincenzo Librandi, Table of n, a(n) for n = 5..200
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Haskell
a053132 n = a053132_list !! (n-5) a053132_list = f [1] $ drop 2 a000217_list where f xs ts'@(t:ts) = (sum $ zipWith (*) xs ts') : f (t:xs) ts -- Reinhard Zumkeller, Mar 03 2015
-
Magma
[Binomial(2*n-4,5)/2: n in [5..40]]; // Vincenzo Librandi, Oct 07 2011
-
Mathematica
Binomial[2*Range[5,40]-4,5]/2 (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{3,28,126,396,1001,2184},40] (* Harvey P. Dale, Oct 25 2015 *)
-
PARI
for(n=5,50, print1(binomial(2*n-4,5)/2, ", ")) \\ G. C. Greubel, Aug 26 2018
Formula
a(n) = binomial(2*n-4, 5)/2 if n >= 5 else 0.
G.f.: (x^5)*(3+10*x+3*x^2)/(1-x)^6.
a(n) = A053127(n)/2
From Amiram Eldar, Jan 10 2022: (Start)
Sum_{n>=5} 1/a(n) = 335/6 - 80*log(2).
Sum_{n>=5} (-1)^(n+1)/a(n) = 85/6 - 20*log(2). (End)