cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053134 Binomial coefficients C(2*n+4,4).

Original entry on oeis.org

1, 15, 70, 210, 495, 1001, 1820, 3060, 4845, 7315, 10626, 14950, 20475, 27405, 35960, 46376, 58905, 73815, 91390, 111930, 135751, 163185, 194580, 230300, 270725, 316251, 367290, 424270, 487635, 557845, 635376, 720720, 814385, 916895, 1028790, 1150626, 1282975
Offset: 0

Views

Author

Keywords

Comments

Even-indexed members of fifth column of Pascal's triangle A007318.
Number of standard tableaux of shape (2n+1,1^4). - Emeric Deutsch, May 30 2004
Number of integer solutions to -n <= x <= y <= z <= w <= n. - Michael Somos, Dec 28 2011

Examples

			1 + 15*x + 70*x^2 + 210*x^3 + 495*x^4 + 1001*x^5 + 1820*x^6 + 3060*x^7 + ...
		

Crossrefs

Programs

  • Magma
    [Binomial(2*n+4,4): n in [0..30]]; // Vincenzo Librandi, Oct 07 2011
    
  • Mathematica
    Table[Binomial[2*n+4,4], {n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5 ,1}, {1, 15, 70, 210, 495}, 30] (* G. C. Greubel, Sep 03 2018 *)
  • PARI
    for(n=0,30, print1(binomial(2*n+4,4), ", ")) \\ G. C. Greubel, Sep 03 2018

Formula

a(n) = binomial(2*n+4, 4) = A000332(2*n+4).
G.f.: (1 + 10*x + 5*x^2)/(1-x)^5.
a(1 - n) = A053126(n). - Michael Somos, Dec 28 2011
E.g.f.: (6 + 84*x + 123*x^2 + 44*x^3 + 4*x^4)*exp(x)/6. - G. C. Greubel, Sep 03 2018
a(n) = (1/6)*(n + 1)*(n + 2)*(2*n + 1)*(2*n + 3). - Gerry Martens, Oct 13 2022
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=0} 1/a(n) = 16*log(2) - 10.
Sum_{n>=0} (-1)^n/a(n) = 10 - 2*Pi - 4*log(2). (End)