A053134 Binomial coefficients C(2*n+4,4).
1, 15, 70, 210, 495, 1001, 1820, 3060, 4845, 7315, 10626, 14950, 20475, 27405, 35960, 46376, 58905, 73815, 91390, 111930, 135751, 163185, 194580, 230300, 270725, 316251, 367290, 424270, 487635, 557845, 635376, 720720, 814385, 916895, 1028790, 1150626, 1282975
Offset: 0
Examples
1 + 15*x + 70*x^2 + 210*x^3 + 495*x^4 + 1001*x^5 + 1820*x^6 + 3060*x^7 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Milan Janjić, Two Enumerative Functions.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[Binomial(2*n+4,4): n in [0..30]]; // Vincenzo Librandi, Oct 07 2011
-
Mathematica
Table[Binomial[2*n+4,4], {n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5 ,1}, {1, 15, 70, 210, 495}, 30] (* G. C. Greubel, Sep 03 2018 *)
-
PARI
for(n=0,30, print1(binomial(2*n+4,4), ", ")) \\ G. C. Greubel, Sep 03 2018
Formula
a(n) = binomial(2*n+4, 4) = A000332(2*n+4).
G.f.: (1 + 10*x + 5*x^2)/(1-x)^5.
a(1 - n) = A053126(n). - Michael Somos, Dec 28 2011
E.g.f.: (6 + 84*x + 123*x^2 + 44*x^3 + 4*x^4)*exp(x)/6. - G. C. Greubel, Sep 03 2018
a(n) = (1/6)*(n + 1)*(n + 2)*(2*n + 1)*(2*n + 3). - Gerry Martens, Oct 13 2022
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=0} 1/a(n) = 16*log(2) - 10.
Sum_{n>=0} (-1)^n/a(n) = 10 - 2*Pi - 4*log(2). (End)
Comments