cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053137 Binomial coefficients C(2*n+8,8).

Original entry on oeis.org

1, 45, 495, 3003, 12870, 43758, 125970, 319770, 735471, 1562275, 3108105, 5852925, 10518300, 18156204, 30260340, 48903492, 76904685, 118030185, 177232627, 260932815, 377348994, 536878650, 752538150, 1040465790, 1420494075, 1916797311, 2558620845, 3381098545
Offset: 0

Views

Author

Keywords

Comments

Even-indexed members of ninth column of Pascal's triangle A007318.
Number of standard tableaux of shape (2n+1,1^8). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

  • Magma
    [Binomial(2*n+8,8): n in [0..30]]; // Vincenzo Librandi, Oct 07 2011
    
  • Mathematica
    Table[Binomial[2*n+8, 8], {n, 0, 30}] (* G. C. Greubel, Sep 03 2018 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,45,495,3003,12870,43758,125970,319770,735471},30] (* Harvey P. Dale, Jul 02 2022 *)
  • PARI
    a(n)=binomial(2*n+8,8) \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = binomial(2*n+8, 8) = A000581(2*n+8).
G.f.: (1+36*x+126*x^2+84*x^3+9*x^4) / (1-x)^9 = (1+3*x) * (3*x^3+27*x^2+33*x+1) / (1-x)^9.
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=0} 1/a(n) = 512*log(2) - 5308/15.
Sum_{n>=0} (-1)^n/a(n) = 16*Pi + 32*log(2) - 1072/15. (End)