cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000581 a(n) = binomial coefficient C(n,8).

Original entry on oeis.org

1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, 43758, 75582, 125970, 203490, 319770, 490314, 735471, 1081575, 1562275, 2220075, 3108105, 4292145, 5852925, 7888725, 10518300, 13884156, 18156204, 23535820, 30260340, 38608020, 48903492, 61523748, 76904685
Offset: 8

Views

Author

Keywords

Comments

Figurate numbers based on 8-dimensional regular simplex. - Jonathan Vos Post, Nov 28 2004
Just as A005712 and A000574 are described as the coefficients of x^4 and x^5 in the expansion of (1+x+x^2)^n, so should this sequence be described as the coefficients of x^3 therein. - R. K. Guy, Oct 19 2007
Product of 8 consecutive numbers divided by 8!. - Artur Jasinski, Dec 02 2007
In this sequence there are no primes. - Artur Jasinski, Dec 02 2007
a(n) = number of (n-8)-digit numbers with nondescending digits. E.g., a(9) = 9 = {1,2,3,..,9}, a(10) = 45 = {11-19, 22-29, 33-39, ..., 99} [0 is counted as a zero-digit number rather than a 1-digit number]. - Toby Gottfried, Feb 14 2012
a(n) =fallfac(n, 8)/8! = binomial(n, 8) is also the number of independent components of an antisymmetric tensor of rank 8 and dimension n >= 8 (for n = 1..7 this becomes 0). Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Number of compositions (ordered partitions) of n+1 into exactly 9 parts. - Juergen Will, Jan 02 2016
Number of weak compositions (ordered weak partitions) of n-8 into exactly 9 parts. - Juergen Will, Jan 02 2016
Partial sums of A000580. - Art Baker, Mar 26 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x^8/(1-x)^9.
a(n) = A110555(n+1,8). - Reinhard Zumkeller, Jul 27 2005
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6)*(n-7)/8!. - Artur Jasinski, Dec 02 2007
Sum_{k>=8} 1/a(k) = 8/7. - Tom Edgar, Sep 10 2015
Sum_{n>=8} (-1)^n/a(n) = A001787(8)*log(2) - A242091(8)/7! = 1024*log(2) - 74432/105 = 0.9065224171... - Amiram Eldar, Dec 10 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 17 2000
Some formulas referring to other offsets rewritten by R. J. Mathar, Jul 07 2009
3 more terms from William Boyles, Aug 06 2015

A048854 Triangle read by rows. A generalization of unsigned Lah numbers, called L[4,1].

Original entry on oeis.org

1, 2, 1, 12, 12, 1, 120, 180, 30, 1, 1680, 3360, 840, 56, 1, 30240, 75600, 25200, 2520, 90, 1, 665280, 1995840, 831600, 110880, 5940, 132, 1, 17297280, 60540480, 30270240, 5045040, 360360, 12012, 182, 1, 518918400, 2075673600, 1210809600, 242161920, 21621600, 960960, 21840, 240, 1, 17643225600, 79394515200, 52929676800, 12350257920, 1323241920, 73513440, 2227680, 36720, 306, 1
Offset: 0

Views

Author

Keywords

Comments

s(n,x) := Sum_{m=0..n} T(n,m)*x^m are monic polynomials satisfying s(n,x+y) = Sum_{k=0..n} binomial(n,k)*s(k,x)*p(n-k,y), with polynomials p(n,x) = Sum_{m=1..n} A048786(n,m)*x^m (row polynomials of triangle A048786) and p(0,x)=1.
In the umbral calculus (see the Roman reference, p. 21) the s(n,x) are called Sheffer polynomials for(1/sqrt(1+4*t),t/(1+4*t)). Here the Sheffer notation differs. See the W. Lang link under A006232.
For the general L[d,a] triangles see A286724, also for references.
This is the generalized signless Lah number triangle L[4,1], the Sheffer triangle ((1 - 4*t)^(-1/2), t/(1 - 4*t)). It is defined as transition matrix
risefac[4,1](x, n) = Sum_{m=0..n} L[4,1](n, m)*fallfac[4,1](x, m), where risefac[4,1](x, n) := Product_{0..n-1} (x + (1 + 4*j)) for n >= 1 and risefac[4,1](x, 0) := 1, and fallfac[4,1](x, n) := Product_{0..n-1} (x - (1 + 4*j)) for n >= 1 and fallfac[4,1](x, 0) := 1.
In matrix notation: L[4,1] = S1phat[4,1]*S2hat[4,1] with the unsigned scaled Stirling1 and the scaled Stirling2 generalizations A290319 and A111578 (but here with offsets 0), respectively.
The a- and z-sequences for this Sheffer matrix have e.g.f.s Ea(t) = 1 + 4*t and Ez(t) = (1 + 4*t)*(1 - (1 + 4*t)^(-1/2))/t, respectively. That is, a = {1, 4, repeat(0)} and z(n) = 2*A292220(n). See the W. Lang link on a- and z-sequences there.
The inverse matrix T^(-1) = L^(-1)[4,1] is Sheffer ((1 + 4*t)^(-1/2), t/(1 + 4*t)). This means that T^(-1)(n, m) = (-1)^(n-m)*T(n, m).
fallfac[4,1](x, n) = Sum_{m=0..n} (-1)^(n-m)*T(n, m)*risefac[4,1](x, m), n >= 0.
Diagonal sequences have o.g.f. G(d, x) = A001813(d)*Sum_{m=0..d} A091042(d, m)*x^m/(1 - x)^{2*d + 1}, for d >= 0 (d=0 main diagonal). G(d, x) generates {A001813(d)*binomial(2*(n + d),2*d)}{n >= 0}. See the second W. Lang link on how to compute o.g.f.s of diagonal sequences of general Sheffer triangles. - _Wolfdieter Lang, Oct 12 2017

Examples

			The triangle T(n, m) begins:
n\m         0          1          2         3        4      5     6   7 8  ...
0:          1
1:          2          1
2:         12         12          1
3:        120        180         30         1
4:       1680       3360        840        56        1
5:      30240      75600      25200      2520       90      1
6:     665280    1995840     831600    110880     5940    132     1
7:   17297280   60540480   30270240   5045040   360360  12012   182   1
8:  518918400 2075673600 1210809600 242161920 21621600 960960 21840 240 1
...
n = 9: 17643225600 79394515200 52929676800 12350257920 1323241920 73513440 2227680 36720 306 1,
n = 10: 670442572800 3352212864000 2514159648000 670442572800 83805321600 5587021440 211629600 4651200 58140 380 1.
...
Recurrence from a-sequence: T(4, 2) = 2*T(3, 1) + 4*4*T(3, 2) = 2*180 + 16*30 = 840.
Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2)+ z(3)*T(3, 3)) = 4*(2*120 + 2*180 - 8*30 + 60*1) = 1680.
Four term recurrence: T(4, 2) = T(3, 1) + 2*13*T(3, 2) - 8*3*5*T(2, 2) =  180 + 26*30 - 120*1 = 840.
Meixner type identity for n = 2: (D_x - 4*(D_x)^2)*(12 + 12*x + 1*x^2) = (12 + 2*x) - 4*2 = 2*(2 + x).
Sheffer recurrence for R(3, x): [(2 + x) + 8*(1 + x)*D_x + 16*x*(D_x)^2] (12 + 12*x + 1*x^2) = (2 + x)*(12 + 12*x + x^2) + 8*(1 + x)*(12 + 2*x) + 16*2*x = 120 + 180*x + 30*x^2 + x^3 = R(3, x).
Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (4!*10/2)*(1*30/3! + 4*1/2!) = 840.
Diagonal sequence d = 2: {12, 180, 840 ...} has o.g.f. 12*(1 + 10*x + 5*x^2)/(1 - x)^5  (see A001813(2) and row n=2 of A091042) generating
{12*binomial(2*(n + 2), 4)}_{n >= 0}. - _Wolfdieter Lang_, Oct 12 2017
		

References

  • S. Roman, The Umbral Calculus, Academic Press, New York, 1984.

Crossrefs

Related to triangle A046521. Cf. A048786. a(n, 0) = A001813.
A111578, A271703 L[1,0], A286724 L[2,1], A290319, A290596 L[3,1], A290597 L[3,2], A292220.
The diagonal sequences are: A000012, 2*A000384(n+1), 12*A053134, 120*A053135, 1680*A053137, ... - Wolfdieter Lang, Oct 12 2017

Programs

  • Maple
    A290604_row := proc(n) exp(x*t/(1-4*t))/sqrt(1-4*t): series(%, t, n+2): seq(n!*coeff(coeff(%,t,n),x,j), j=0..n) end: seq(A290604_row(n), n=0..9); # Peter Luschny, Sep 23 2017
  • Mathematica
    T[n_, m_] := n!/m! * Binomial[2*n, n] * Binomial[n, m] / Binomial[2*m, m]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *)
    T[0, 0] = 1; T[-1, ] = T[, -1] = 0; T[n_, m_] /; n < m = 0; T[n_, m_] := T[n, m] = T[n-1, m-1] + 2*(4*n-3)*T[n-1, m] - 8*(n-1)*(2*n-3)*T[n-2, m]; Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Sep 23 2017 *)

Formula

T(n, m) = (n!/m!)*A046521(n, m) = (n!/m!)* binomial(2*n, n)*binomial(n, m)/binomial(2*m, m), n >= m >= 0, a(n, m) := 0, n < m.
Sum_{n>=0, k>=0} T(n, k)*x^n*y^k/(2*n)! = exp(x)*cosh(sqrt(x*y)). - Vladeta Jovovic, Feb 21 2003
T(n, m) = L[4,1](n,m) = Sum_{k=m..n} A290319(n, k)*A111578(k+1, m+1), 0 <= m <= n.
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 4*t)^(-1/2)*exp(x*t/(1 - 4*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 4*t)^(-1/2)*(t/(1 - 4*t))^m/m!, m >= 0.
Three term recurrence for column entries m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 4*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0..n-1} z(j)*T(n-1, j), n >= 1, T(0, 0) = 0, from the a-sequence {1, 4 repeat(0)} and the z(j) = 2*A292220(j) (see above).
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(4*n - 3)*T(n-1, m) - 8*(n-1)*(2*n - 3)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 4*D_x)) * R(n, x) = n * R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-4)^k*(D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(2 + x)*1 + 8*(1 + x)*D_x + 16*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (n!/(n-m))*(2 + 4*m)*Sum_{p=0..n-1-m} 4^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
Explicit form (from the o.g.f.s of diagonal sequences): ((2*(n-m))!/(n-m)!)*binomial(2*n,2*(n-m)), n >= m >= 0, and vanishing for n < m. - Wolfdieter Lang, Oct 12 2017

Extensions

Name changed, after merging my newer duplicate, from Wolfdieter Lang, Oct 10 2017

A258993 Triangle read by rows: T(n,k) = binomial(n+k,n-k), k = 0..n-1.

Original entry on oeis.org

1, 1, 3, 1, 6, 5, 1, 10, 15, 7, 1, 15, 35, 28, 9, 1, 21, 70, 84, 45, 11, 1, 28, 126, 210, 165, 66, 13, 1, 36, 210, 462, 495, 286, 91, 15, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 55, 495, 1716, 3003, 3003, 1820, 680, 153, 19, 1, 66, 715, 3003, 6435, 8008, 6188, 3060, 969, 190, 21
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 22 2015

Keywords

Comments

T(n,k) = A085478(n,k) = A007318(A094727(n),A004736(k)), k = 0..n-1;
rounded(T(n,k)/(2*k+1)) = A258708(n,k);
rounded(sum(T(n,k)/(2*k+1)): k = 0..n-1) = A000967(n).

Examples

			.  n\k |  0  1    2    3     4     5     6     7    8    9  10 11
. -----+-----------------------------------------------------------
.   1  |  1
.   2  |  1  3
.   3  |  1  6    5
.   4  |  1 10   15    7
.   5  |  1 15   35   28     9
.   6  |  1 21   70   84    45    11
.   7  |  1 28  126  210   165    66    13
.   8  |  1 36  210  462   495   286    91    15
.   9  |  1 45  330  924  1287  1001   455   120   17
.  10  |  1 55  495 1716  3003  3003  1820   680  153   19
.  11  |  1 66  715 3003  6435  8008  6188  3060  969  190  21
.  12  |  1 78 1001 5005 12870 19448 18564 11628 4845 1330 231 23  .
		

Crossrefs

If a diagonal of 1's is added on the right, this becomes A085478.
Essentially the same as A143858.
Cf. A027941 (row sums), A117671 (central terms), A143858, A000967, A258708.
T(n,k): A000217 (k=1), A000332 (k=2), A000579 (k=3), A000581 (k=4), A001287 (k=5), A010965 (k=6), A010967 (k=7), A010969 (k=8), A010971 (k=9), A010973 (k=10), A010975 (k=11), A010977 (k=12), A010979 (k=13), A010981 (k=14), A010983 (k=15), A010985 (k=16), A010987 (k=17), A010989 (k=18), A010991 (k=19), A010993 (k=20), A010995 (k=21), A010997 (k=22), A010999 (k=23), A011001 (k=24), A017714 (k=25), A017716 (k=26), A017718 (k=27), A017720 (k=28), A017722 (k=29), A017724 (k=30), A017726 (k=31), A017728 (k=32), A017730 (k=33), A017732 (k=34), A017734 (k=35), A017736 (k=36), A017738 (k=37), A017740 (k=38), A017742 (k=39), A017744 (k=40), A017746 (k=41), A017748 (k=42), A017750 (k=43), A017752 (k=44), A017754 (k=45), A017756 (k=46), A017758 (k=47), A017760 (k=48), A017762 (k=49), A017764 (k=50).
T(n+k,n): A005408 (k=1), A000384 (k=2), A000447 (k=3), A053134 (k=4), A002299 (k=5), A053135 (k=6), A053136 (k=7), A053137 (k=8), A053138 (k=9), A196789 (k=10).
Cf. A165253.

Programs

  • GAP
    Flat(List([1..12], n-> List([0..n-1], k-> Binomial(n+k,n-k) ))); # G. C. Greubel, Aug 01 2019
  • Haskell
    a258993 n k = a258993_tabl !! (n-1) !! k
    a258993_row n = a258993_tabl !! (n-1)
    a258993_tabl = zipWith (zipWith a007318) a094727_tabl a004736_tabl
    
  • Magma
    [Binomial(n+k,n-k): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    Table[Binomial[n+k,n-k], {n,1,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Aug 01 2019 *)
  • PARI
    T(n,k) = binomial(n+k,n-k);
    for(n=1, 12, for(k=0,n-1, print1(T(n,k), ", "))) \\ G. C. Greubel, Aug 01 2019
    
  • Sage
    [[binomial(n+k,n-k) for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Aug 01 2019
    

Formula

T(n,k) = A085478(n,k) = A007318(A094727(n),A004736(k)), k = 0..n-1;
rounded(T(n,k)/(2*k+1)) = A258708(n,k);
rounded(sum(T(n,k)/(2*k+1)): k = 0..n-1) = A000967(n).

A053138 Binomial coefficients C(2*n+9,9).

Original entry on oeis.org

1, 55, 715, 5005, 24310, 92378, 293930, 817190, 2042975, 4686825, 10015005, 20160075, 38567100, 70607460, 124403620, 211915132, 350343565, 563921995, 886163135, 1362649145, 2054455634, 3042312350, 4431613550, 6358402050, 8996462475, 12565671261, 17341763505
Offset: 0

Views

Author

Keywords

Comments

Even-indexed members of tenth column of Pascal's triangle A007318.
Number of standard tableaux of shape (2n+1,1^9). - Emeric Deutsch, May 30 2004

Crossrefs

Programs

Formula

a(n) = binomial(2*n+9, 9) = A000582(2*n+9).
G.f.: (1 + 45*x + 210*x^2 + 210*x^3 + 45*x^4 + x^5) / (1-x)^10.
G.f.: (1 + x) * (x^4 + 44*x^3 + 166*x^2 + 44*x + 1) / (1-x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n > 9. - Wesley Ivan Hurt, Dec 05 2016
From Amiram Eldar, Nov 03 2022: (Start)
Sum_{n>=0} 1/a(n) = 1152*log(2) - 27912/35.
Sum_{n>=0} (-1)^n/a(n) = 36*Pi - 3924/35. (End)

A196789 Binomial coefficients C(2*n+10,10).

Original entry on oeis.org

1, 66, 1001, 8008, 43758, 184756, 646646, 1961256, 5311735, 13123110, 30045015, 64512240, 131128140, 254186856, 472733756, 847660528, 1471442973, 2481256778, 4076350421, 6540715896, 10272278170, 15820024220, 23930713170, 35607051480, 52179482355, 75394027566
Offset: 0

Views

Author

Vincenzo Librandi, Oct 07 2011

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(2*n+10,10): n in [0..30]];
  • Mathematica
    a[n_] := Binomial[2*n + 10, 10]; Array[a, 20, 0] (* Amiram Eldar, Oct 21 2022 *)

Formula

G.f.: (11*x^5+165*x^4+462*x^3+330*x^2+55*x+1) / (1-x)^11.
From Amiram Eldar, Oct 21 2022: (Start)
Sum_{n>=0} 1/a(n) = 2560*log(2) - 148969/84.
Sum_{n>=0} (-1)^n/a(n) = 40*Pi - 80*log(2) - 5815/84. (End)
Showing 1-5 of 5 results.