cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 53 results. Next

A145458 Exponential transform of C(n,8) = A000581.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 1, 9, 45, 165, 495, 1287, 3003, 6435, 19305, 243100, 3981978, 49959702, 498967170, 4190469570, 30728937690, 201931408074, 1213163827326, 6849350570700, 39615797628550, 296414654550300, 3418235092302030
Offset: 0

Views

Author

Alois P. Heinz, Oct 10 2008

Keywords

Comments

a(n) is the number of ways of placing n labeled balls into indistinguishable boxes, where in each filled box 8 balls are seen at the top.
a(n) is also the number of forests of labeled rooted trees of height at most 1, with n labels, where each root contains 8 labels.

Crossrefs

8th column of A145460, A143398.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          add(binomial(n-1, j-1) *binomial(j,8) *a(n-j), j=1..n))
        end:
    seq(a(n), n=0..35);
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Exp[x] x^8/8!],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Feb 05 2020 *)

Formula

E.g.f.: exp(exp(x)*x^8/8!).

A144869 Shadow transform of C(n+7,8) = A000581(n+7).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 1, 1, 6, 2, 8, 1, 8, 1, 8, 1, 8, 6, 8, 1, 3, 6, 8, 1, 6, 7, 6, 1, 8, 7, 8, 1, 21, 14, 4, 7, 8, 8, 21, 1, 8, 2, 8, 8, 21, 7, 8, 1, 2, 6, 21, 4, 8, 5, 26, 1, 21, 7, 8, 6, 8, 13, 11, 1, 28, 21, 8, 11, 21, 10, 8, 6, 8, 5, 16, 4, 11, 21, 8, 1, 6, 8, 8, 2, 26, 6, 21, 7, 8, 20, 12, 7, 21, 13
Offset: 1

Views

Author

Alois P. Heinz, Sep 23 2008

Keywords

Crossrefs

8th column of A144871. Cf. A007318.

Programs

  • Maple
    shadow:= proc(p) proc(n) local j; add (`if` (modp(p(j), n)=0, 1,0), j=0..n-1) end end: f:= proc(k) proc(n) binomial (n+k-1,k) end end: a:= n-> shadow (f(8))(n): seq (a(n), n=1..100);

A000332 Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24.

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 15, 35, 70, 126, 210, 330, 495, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 5985, 7315, 8855, 10626, 12650, 14950, 17550, 20475, 23751, 27405, 31465, 35960, 40920, 46376, 52360, 58905, 66045, 73815, 82251, 91390, 101270, 111930, 123410
Offset: 0

Views

Author

Keywords

Comments

Number of intersection points of diagonals of convex n-gon where no more than two diagonals intersect at any point in the interior.
Also the number of equilateral triangles with vertices in an equilateral triangular array of points with n rows (offset 1), with any orientation. - Ignacio Larrosa Cañestro, Apr 09 2002. [See Les Reid link for proof. - N. J. A. Sloane, Apr 02 2016] [See Peter Kagey link for alternate proof. - Sameer Gauria, Jul 29 2025]
Start from cubane and attach amino acids according to the reaction scheme that describes the reaction between the active sites. See the hyperlink on chemistry. - Robert G. Wilson v, Aug 02 2002
For n>0, a(n) = (-1/8)*(coefficient of x in Zagier's polynomial P_(2n,n)). (Zagier's polynomials are used by PARI/GP for acceleration of alternating or positive series.)
Figurate numbers based on the 4-dimensional regular convex polytope called the regular 4-simplex, pentachoron, 5-cell, pentatope or 4-hypertetrahedron with Schlaefli symbol {3,3,3}. a(n)=((n*(n-1)*(n-2)*(n-3))/4!). - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004, R. J. Mathar, Jul 07 2009
Maximal number of crossings that can be created by connecting n vertices with straight lines. - Cameron Redsell-Montgomerie (credsell(AT)uoguelph.ca), Jan 30 2007
If X is an n-set and Y a fixed (n-1)-subset of X then a(n) is equal to the number of 4-subsets of X intersecting Y. - Milan Janjic, Aug 15 2007
Product of four consecutive numbers divided by 24. - Artur Jasinski, Dec 02 2007
The only prime in this sequence is 5. - Artur Jasinski, Dec 02 2007
For strings consisting entirely of 0's and 1's, the number of distinct arrangements of four 1's such that 1's are not adjacent. The shortest possible string is 7 characters, of which there is only one solution: 1010101, corresponding to a(5). An eight-character string has 5 solutions, nine has 15, ten has 35 and so on, congruent to A000332. - Gil Broussard, Mar 19 2008
For a(n)>0, a(n) is pentagonal if and only if 3 does not divide n. All terms belong to the generalized pentagonal sequence (A001318). Cf. A000326, A145919, A145920. - Matthew Vandermast, Oct 28 2008
Nonzero terms = row sums of triangle A158824. - Gary W. Adamson, Mar 28 2009
Except for the 4 initial 0's, is equivalent to the partial sums of the tetrahedral numbers A000292. - Jeremy Cahill (jcahill(AT)inbox.com), Apr 15 2009
If the first 3 zeros are disregarded, that is, if one looks at binomial(n+3, 4) with n>=0, then it becomes a 'Matryoshka doll' sequence with alpha=0: seq(add(add(add(i,i=alpha..k),k=alpha..n),n=alpha..m),m=alpha..50). - Peter Luschny, Jul 14 2009
For n>=1, a(n) is the number of n-digit numbers the binary expansion of which contains two runs of 0's. - Vladimir Shevelev, Jul 30 2010
For n>0, a(n) is the number of crossing set partitions of {1,2,..,n} into n-2 blocks. - Peter Luschny, Apr 29 2011
The Kn3, Ca3 and Gi3 triangle sums of A139600 are related to the sequence given above, e.g., Gi3(n) = 2*A000332(n+3) - A000332(n+2) + 7*A000332(n+1). For the definitions of these triangle sums, see A180662. - Johannes W. Meijer, Apr 29 2011
For n > 3, a(n) is the hyper-Wiener index of the path graph on n-2 vertices. - Emeric Deutsch, Feb 15 2012
Except for the four initial zeros, number of all possible tetrahedra of any size, having the same orientation as the original regular tetrahedron, formed when intersecting the latter by planes parallel to its sides and dividing its edges into n equal parts. - V.J. Pohjola, Aug 31 2012
a(n+3) is the number of different ways to color the faces (or the vertices) of a regular tetrahedron with n colors if we count mirror images as the same.
a(n) = fallfac(n,4)/4! is also the number of independent components of an antisymmetric tensor of rank 4 and dimension n >= 1. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Does not satisfy Benford's law [Ross, 2012] - N. J. A. Sloane, Feb 12 2017
Number of chiral pairs of colorings of the vertices (or faces) of a regular tetrahedron with n available colors. Chiral colorings come in pairs, each the reflection of the other. - Robert A. Russell, Jan 22 2020
From Mircea Dan Rus, Aug 26 2020: (Start)
a(n+3) is the number of lattice rectangles (squares included) in a staircase of order n; this is obtained by stacking n rows of consecutive unit lattice squares, aligned either to the left or to the right, which consist of 1, 2, 3, ..., n squares and which are stacked either in the increasing or in the decreasing order of their lengths. Below, there is a staircase or order 4 which contains a(7) = 35 rectangles. [See the Teofil Bogdan and Mircea Dan Rus link, problem 3, under A004320]
_
||
|||_
|||_|_
|||_|_|
(End)
a(n+4) is the number of strings of length n on an ordered alphabet of 5 letters where the characters in the word are in nondecreasing order. E.g., number of length-2 words is 15: aa,ab,ac,ad,ae,bb,bc,bd,be,cc,cd,ce,dd,de,ee. - Jim Nastos, Jan 18 2021
From Tom Copeland, Jun 07 2021: (Start)
Aside from the zeros, this is the fifth diagonal of the Pascal matrix A007318, the only nonvanishing diagonal (fifth) of the matrix representation IM = (A132440)^4/4! of the differential operator D^4/4!, when acting on the row vector of coefficients of an o.g.f., or power series.
M = e^{IM} is the matrix of coefficients of the Appell sequence p_n(x) = e^{D^4/4!} x^n = e^{b. D} x^n = (b. + x)^n = Sum_{k=0..n} binomial(n,k) b_n x^{n-k}, where the (b.)^n = b_n have the e.g.f. e^{b.t} = e^{t^4/4!}, which is that for A025036 aerated with triple zeros, the first column of M.
See A099174 and A000292 for analogous relationships for the third and fourth diagonals of the Pascal matrix. (End)
For integer m and positive integer r >= 3, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (3 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024

Examples

			a(5) = 5 from the five independent components of an antisymmetric tensor A of rank 4 and dimension 5, namely A(1,2,3,4), A(1,2,3,5), A(1,2,4,5), A(1,3,4,5) and A(2,3,4,5). See the Dec 10 2015 comment. - _Wolfdieter Lang_, Dec 10 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 8.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 70.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 294.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Charles W. Trigg, Mathematical Quickies, New York: Dover Publications, Inc., 1985, p. 53, #191.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 127.

Crossrefs

binomial(n, k): A161680 (k = 2), A000389 (k = 5), A000579 (k = 6), A000580 (k = 7), A000581 (k = 8), A000582 (k = 9).
Cf. A000217, A000292, A007318 (column k = 4).
Cf. A158824.
Cf. A006008 (Number of ways to color the faces (or vertices) of a regular tetrahedron with n colors when mirror images are counted as two).
Cf. A104712 (third column, k=4).
See A269747 for a 3-D analog.
Cf. A006008 (oriented), A006003 (achiral) tetrahedron colorings.
Row 3 of A325000, col. 4 of A007318.

Programs

  • GAP
    A000332 := List([1..10^2], n -> Binomial(n, 4)); # Muniru A Asiru, Oct 16 2017
    
  • Magma
    [Binomial(n,4): n in [0..50]]; // Vincenzo Librandi, Nov 23 2014
    
  • Maple
    A000332 := n->binomial(n,4); [seq(binomial(n,4), n=0..100)];
  • Mathematica
    Table[ Binomial[n, 4], {n, 0, 45} ] (* corrected by Harvey P. Dale, Aug 22 2011 *)
    Table[(n-4)(n-3)(n-2)(n-1)/24, {n, 100}] (* Artur Jasinski, Dec 02 2007 *)
    LinearRecurrence[{5,-10,10,-5,1}, {0,0,0,0,1}, 45] (* Harvey P. Dale, Aug 22 2011 *)
    CoefficientList[Series[x^4 / (1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Nov 23 2014 *)
  • PARI
    a(n)=binomial(n,4);
    
  • Python
    # Starts at a(3), i.e. computes n*(n+1)*(n+2)*(n+3)/24
    # which is more in line with A000217 and A000292.
    def A000332():
        x, y, z, u = 1, 1, 1, 1
        yield 0
        while True:
            yield x
            x, y, z, u = x + y + z + u + 1, y + z + u + 1, z + u + 1, u + 1
    a = A000332(); print([next(a) for i in range(41)]) # Peter Luschny, Aug 03 2019
    
  • Python
    print([n*(n-1)*(n-2)*(n-3)//24 for n in range(50)])
    # Gennady Eremin, Feb 06 2022

Formula

a(n) = n*(n-1)*(n-2)*(n-3)/24.
G.f.: x^4/(1-x)^5. - Simon Plouffe in his 1992 dissertation
a(n) = n*a(n-1)/(n-4). - Benoit Cloitre, Apr 26 2003, R. J. Mathar, Jul 07 2009
a(n) = Sum_{k=1..n-3} Sum_{i=1..k} i*(i+1)/2. - Benoit Cloitre, Jun 15 2003
Convolution of natural numbers {1, 2, 3, 4, ...} and A000217, the triangular numbers {1, 3, 6, 10, ...}. - Jon Perry, Jun 25 2003
a(n) = A110555(n+1,4). - Reinhard Zumkeller, Jul 27 2005
a(n+1) = ((n^5-(n-1)^5) - (n^3-(n-1)^3))/24 - (n^5-(n-1)^5-1)/30; a(n) = A006322(n-2)-A006325(n-1). - Xavier Acloque, Oct 20 2003; R. J. Mathar, Jul 07 2009
a(4*n+2) = Pyr(n+4, 4*n+2) where the polygonal pyramidal numbers are defined for integers A>2 and B>=0 by Pyr(A, B) = B-th A-gonal pyramid number = ((A-2)*B^3 + 3*B^2 - (A-5)*B)/6; For all positive integers i and the pentagonal number function P(x) = x*(3*x-1)/2: a(3*i-2) = P(P(i)) and a(3*i-1) = P(P(i) + i); 1 + 24*a(n) = (n^2 + 3*n + 1)^2. - Jonathan Vos Post, Nov 15 2004
First differences of A000389(n). - Alexander Adamchuk, Dec 19 2004
For n > 3, the sum of the first n-2 tetrahedral numbers (A000292). - Martin Steven McCormick (mathseq(AT)wazer.net), Apr 06 2005 [Corrected by Doug Bell, Jun 25 2017]
Starting (1, 5, 15, 35, ...), = binomial transform of [1, 4, 6, 4, 1, 0, 0, 0, ...]. - Gary W. Adamson, Dec 28 2007
Sum_{n>=4} 1/a(n) = 4/3, from the Taylor expansion of (1-x)^3*log(1-x) in the limit x->1. - R. J. Mathar, Jan 27 2009
A034263(n) = (n+1)*a(n+4) - Sum_{i=0..n+3} a(i). Also A132458(n) = a(n)^2 - a(n-1)^2 for n>0. - Bruno Berselli, Dec 29 2010
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=1. - Harvey P. Dale, Aug 22 2011
a(n) = (binomial(n-1,2)^2 - binomial(n-1,2))/6. - Gary Detlefs, Nov 20 2011
a(n) = Sum_{k=1..n-2} Sum_{i=1..k} i*(n-k-2). - Wesley Ivan Hurt, Sep 25 2013
a(n) = (A000217(A000217(n-2) - 1))/3 = ((((n-2)^2 + (n-2))/2)^2 - (((n-2)^2 + (n-2))/2))/(2*3). - Raphie Frank, Jan 16 2014
Sum_{n>=0} a(n)/n! = e/24. Sum_{n>=3} a(n)/(n-3)! = 73*e/24. See A067764 regarding the second ratio. - Richard R. Forberg, Dec 26 2013
Sum_{n>=4} (-1)^(n+1)/a(n) = 32*log(2) - 64/3 = A242023 = 0.847376444589... . - Richard R. Forberg, Aug 11 2014
4/(Sum_{n>=m} 1/a(n)) = A027480(m-3), for m>=4. - Richard R. Forberg, Aug 12 2014
E.g.f.: x^4*exp(x)/24. - Robert Israel, Nov 23 2014
a(n+3) = C(n,1) + 3*C(n,2) + 3*C(n,3) + C(n,4). Each term indicates the number of ways to use n colors to color a tetrahedron with exactly 1, 2, 3, or 4 colors.
a(n) = A080852(1,n-4). - R. J. Mathar, Jul 28 2016
From Gary W. Adamson, Feb 06 2017: (Start)
G.f.: Starting (1, 5, 14, ...), x/(1-x)^5 can be written
as (x * r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = (1+x)^5;
as (x * r(x) * r(x^3) * r(x^9) * r(x^27) * ...) where r(x) = (1+x+x^2)^5;
as (x * r(x) * r(x^4) * r(x^16) * r(x^64) * ...) where r(x) = (1+x+x^2+x^3)^5;
... (as a conjectured infinite set). (End)
From Robert A. Russell, Jan 22 2020: (Start)
a(n) = A006008(n) - a(n+3) = (A006008(n) - A006003(n)) / 2 = a(n+3) - A006003(n).
a(n+3) = A006008(n) - a(n) = (A006008(n) + A006003(n)) / 2 = a(n) + A006003(n).
a(n) = A007318(n,4).
a(n+3) = A325000(3,n). (End)
Product_{n>=5} (1 - 1/a(n)) = cosh(sqrt(15)*Pi/2)/(100*Pi). - Amiram Eldar, Jan 21 2021

Extensions

Some formulas that referred to another offset corrected by R. J. Mathar, Jul 07 2009

A000389 Binomial coefficients C(n,5).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, 53130, 65780, 80730, 98280, 118755, 142506, 169911, 201376, 237336, 278256, 324632, 376992, 435897, 501942, 575757, 658008, 749398
Offset: 0

Views

Author

Keywords

Comments

a(n+4) is the number of inequivalent ways of coloring the vertices of a regular 4-dimensional simplex with n colors, under the full symmetric group S_5 of order 120, with cycle index (x1^5 + 10*x1^3*x2 + 20*x1^2*x3 + 15*x1*x2^2 + 30*x1*x4 + 20*x2*x3 + 24*x5)/120.
Figurate numbers based on 5-dimensional regular simplex. According to Hyun Kwang Kim, it appears that every nonnegative integer can be represented as the sum of g = 10 of these 5-simplex(n) numbers (compared with g=3 for triangular numbers, g=5 for tetrahedral numbers and g=8 for pentatope numbers). - Jonathan Vos Post, Nov 28 2004
The convolution of the nonnegative integers (A001477) with the tetrahedral numbers (A000292), which are the convolution of the nonnegative integers with themselves (making appropriate allowances for offsets of all sequences). - Graeme McRae, Jun 07 2006
a(n) is the number of terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6)^n. - Sergio Falcon, Feb 12 2007
Product of five consecutive numbers divided by 120. - Artur Jasinski, Dec 02 2007
Equals binomial transform of [1, 5, 10, 10, 5, 1, 0, 0, 0, ...]. - Gary W. Adamson, Feb 02 2009
Equals INVERTi transform of A099242 (1, 7, 34, 153, 686, 3088, ...). - Gary W. Adamson, Feb 02 2009
For a team with n basketball players (n>=5), this sequence is the number of possible starting lineups of 5 players, without regard to the positions (center, forward, guard) of the players. - Mohammad K. Azarian, Sep 10 2009
a(n) is the number of different patterns, regardless of order, when throwing (n-5) 6-sided dice. For example, one die can display the 6 numbers 1, 2, ..., 6; two dice can display the 21 digit-pairs 11, 12, ..., 56, 66. - Ian Duff, Nov 16 2009
Sum of the first n pentatope numbers (1, 5, 15, 35, 70, 126, 210, ...), see A000332. - Paul Muljadi, Dec 16 2009
Sum_{n>=0} a(n)/n! = e/120. Sum_{n>=4} a(n)/(n-4)! = 501*e/120. See A067764 regarding the second ratio. - Richard R. Forberg, Dec 26 2013
For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 4 elements, which is 3*C(n+1,5) (for n>=4), hence a(n) = 3*C(n+1,5) = 3*A000389(n+1). - Serhat Bulut, Mar 11 2015
a(n) = fallfac(n,5)/5! is also the number of independent components of an antisymmetric tensor of rank 5 and dimension n >= 1. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Number of compositions (ordered partitions) of n+1 into exactly 6 parts. - Juergen Will, Jan 02 2016
Number of weak compositions (ordered weak partitions) of n-5 into exactly 6 parts. - Juergen Will, Jan 02 2016
a(n+3) could be the general number of all geodetic graphs of diameter n>=2 homeomorphic to the Petersen Graph. - Carlos Enrique Frasser, May 24 2018
From Robert A. Russell, Dec 24 2020: (Start)
a(n) is the number of chiral pairs of colorings of the 5 tetrahedral facets (or vertices) of the regular 4-D simplex (5-cell, pentachoron, Schläfli symbol {3,3,3}) using subsets of a set of n colors. Each member of a chiral pair is a reflection but not a rotation of the other.
a(n+4) is the number of unoriented colorings of the 5 tetrahedral facets of the regular 4-D simplex (5-cell, pentachoron) using subsets of a set of n colors. Each chiral pair is counted as one when enumerating unoriented arrangements. (End)
For integer m and positive integer r >= 4, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (4 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024

Examples

			G.f. = x^5 + 6*x^6 + 21*x^7 + 56*x^8 + 126*x^9 + 252*x^10 + 462*x^11 + ...
For A={1,2,3,4}, the only subset with 4 elements is {1,2,3,4}; sum of 2 minimum elements of this subset: a(4) = 1+2 = 3 = 3*C(4+1,5).
For A={1,2,3,4,5}, the subsets with 4 elements are {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}; sum of 2 smallest elements of each subset: a(5) = (1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 18 = 3*C(5+1,5). - _Serhat Bulut_, Mar 11 2015
a(6) = 6 from the six independent components of an antisymmetric tensor A of rank 5 and dimension 6: A(1,2,3,4,5), A(1,2,3,4,6), A(1,2,3,5,6), A(1,2,4,5,6), A(1,3,4,5,6), A(2,3,4,5,6). See the Dec 10 2015 comment. - _Wolfdieter Lang_, Dec 10 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • Gupta, Hansraj; Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A099242. - Gary W. Adamson, Feb 02 2009
Cf. A242023. A104712 (fourth column, k=5).
5-cell colorings: A337895 (oriented), A132366(n-1) (achiral).
Unoriented colorings: A063843 (5-cell edges, faces), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338949 (24-cell), A338965 (600-cell vertices, 120-cell facets).
Chiral colorings: A331352 (5-cell edges, faces), A337954 (8-cell vertices, 16-cell facets), A234249 (16-cell vertices, 8-cell facets), A338950 (24-cell), A338966 (600-cell vertices, 120-cell facets).

Programs

  • Haskell
    a000389 n = a000389_list !! n
    a000389_list = 0 : 0 : f [] a000217_list where
       f xs (t:ts) = (sum $ zipWith (*) xs a000217_list) : f (t:xs) ts
    -- Reinhard Zumkeller, Mar 03 2015, Apr 13 2012
    
  • Magma
    [Binomial(n, 5): n in [0..40]]; // Vincenzo Librandi, Mar 12 2015
  • Maple
    f:=n->(1/120)*(n^5-10*n^4+35*n^3-50*n^2+24*n): seq(f(n), n=0..60);
    ZL := [S, {S=Prod(B,B,B,B,B,B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n+1), n=0..42); # Zerinvary Lajos, Mar 13 2007
    A000389:=1/(z-1)**6; # Simon Plouffe, 1992 dissertation
  • Mathematica
    Table[Binomial[n, 5], {n, 5, 50}] (* Stefan Steinerberger, Apr 02 2006 *)
    CoefficientList[Series[x^5 / (1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 12 2015 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,0,0,0,0,1},50] (* Harvey P. Dale, Jul 17 2016 *)
  • PARI
    (conv(u,v)=local(w); w=vector(length(u),i,sum(j=1,i,u[j]*v[i+1-j])); w);
    (t(n)=n*(n+1)/2); u=vector(10,i,t(i)); conv(u,u)
    

Formula

G.f.: x^5/(1-x)^6.
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)/120.
a(n) = (n^5-10*n^4+35*n^3-50*n^2+24*n)/120. (Replace all x_i's in the cycle index with n.)
a(n+2) = Sum_{i+j+k=n} i*j*k. - Benoit Cloitre, Nov 01 2002
Convolution of triangular numbers (A000217) with themselves.
Partial sums of A000332. - Alexander Adamchuk, Dec 19 2004
a(n) = -A110555(n+1,5). - Reinhard Zumkeller, Jul 27 2005
a(n+3) = (1/2!)*(d^2/dx^2)S(n,x)|A049310.%20-%20_Wolfdieter%20Lang">{x=2}, n>=2, one half of second derivative of Chebyshev S-polynomials evaluated at x=2. See A049310. - _Wolfdieter Lang, Apr 04 2007
a(n) = A052787(n+5)/120. - Zerinvary Lajos, Apr 26 2007
Sum_{n>=5} 1/a(n) = 5/4. - R. J. Mathar, Jan 27 2009
For n>4, a(n) = 1/(Integral_{x=0..Pi/2} 10*(sin(x))^(2*n-9)*(cos(x))^9). - Francesco Daddi, Aug 02 2011
Sum_{n>=5} (-1)^(n + 1)/a(n) = 80*log(2) - 655/12 = 0.8684411114... - Richard R. Forberg, Aug 11 2014
a(n) = -a(4-n) for all n in Z. - Michael Somos, Oct 07 2014
0 = a(n)*(+a(n+1) + 4*a(n+2)) + a(n+1)*(-6*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Oct 07 2014
a(n) = 3*C(n+1, 5) = 3*A000389(n+1). - Serhat Bulut, Mar 11 2015
From Ilya Gutkovskiy, Jul 23 2016: (Start)
E.g.f.: x^5*exp(x)/120.
Inverse binomial transform of A054849. (End)
From Robert A. Russell, Dec 24 2020: (Start)
a(n) = A337895(n) - a(n+4) = (A337895(n) - A132366(n-1)) / 2 = a(n+4) - A132366(n-1).
a(n+4) = A337895(n) - a(n) = (A337895(n) + A132366(n-1)) / 2 = a(n) + A132366(n-1).
a(n+4) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4) + 1*C(n,5), where the coefficient of C(n,k) is the number of unoriented pentachoron colorings using exactly k colors. (End)

Extensions

Corrected formulas that had been based on other offsets. - R. J. Mathar, Jun 16 2009
I changed the offset to 0. This will require some further adjustments to the formulas. - N. J. A. Sloane, Aug 01 2010

A000579 Figurate numbers or binomial coefficients C(n,6).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 7, 28, 84, 210, 462, 924, 1716, 3003, 5005, 8008, 12376, 18564, 27132, 38760, 54264, 74613, 100947, 134596, 177100, 230230, 296010, 376740, 475020, 593775, 736281, 906192, 1107568, 1344904, 1623160, 1947792, 2324784, 2760681, 3262623
Offset: 0

Views

Author

Keywords

Comments

Number of triangles (all of whose vertices lie inside the circle) formed when n points in general position on a circle are joined by straight lines - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 25 2000
Figurate numbers based on 6-dimensional regular simplex. According to Hyun Kwang Kim, it appears that every nonnegative integer can be represented as the sum of g = 13 of these numbers. - Jonathan Vos Post, Nov 28 2004
a(n) = A110555(n+1,6). - Reinhard Zumkeller, Jul 27 2005
a(n) is the number of terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7)^n. - Sergio Falcon, Feb 12 2007
Only prime in this sequence is 7. - Artur Jasinski, Dec 02 2007
6-dimensional triangular numbers, sixth partial sums of binomial transform of [1, 0, 0, 0, ...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009, R. J. Mathar, Jul 07 2009
The number of n-digit numbers the binary expansion of which contains 3 runs of 0's. Generally, the number of n-digit numbers with k runs of 0's is Sum_{i = k..n-k} binomial(i-1, k-1)*binomial(n-i, k) = C(n,2*k) = A034839(n,k) - Vladimir Shevelev, Jul 30 2010
The dimension of the space spanned by a 6-form that couples to M5-brane worldsheets wrapping 6-cycles inside tori (ref. Green,Miller,Vanhove eq. 3.10). - Stephen Crowley, Jan 09 2012
For a set of integers {1,2,...,n}, A253943(n) is the sum of the 2 smallest elements of each subset with 5 elements, which is 3*C(n+1,6) (for n>=5), hence A253943(n) = 3*a(n+1). - Serhat Bulut, Oktay Erkan Temizkan, Mar 13 2015
a(n) = fallfac(n, 6)/6! is also the number of independent components of an antisymmetric tensor of rank 6 and dimension n >= 1. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative integer lattice point of the orbit, when the cardinality of the orbit is equal to 645120. - Philippe A.J.G. Chevalier, Dec 28 2015
Coordination sequence for 6-dimensional cyclotomic lattice Z[zeta_7].

Examples

			a(9) = 84 = (1, 3, 3, 1) dot (1, 6, 15, 20) = (1 + 18 + 45 + 20). - _Gary W. Adamson_, Aug 02 2008
G.f. = x^6 + 7*x^7 + 28*x^8 + 84*x^9 + 210*x^10 + 462*x^11 + 924*x^12 + ...
For A = {1,2,3,4,5,6} subsets with 5 elements are {1,2,3,4,5}, {1,2,3,4,6}, {1,2,3,5,6}, {1,2,4,5,6}, {1,3,4,5,6}, {2,3,4,5,6}. Sum of 2 smallest elements of each subset: a(6) = (1+2) + (1+2) + (1+2) + (1+2) + (1+3) + (2+3) = 21 = 3*C(6+1,6) = 3*A000579(6+1). - _Serhat Bulut_, Oktay Erkan Temizkan, Mar 13 2015
a(7) = 7 from the seven independent components of an antisymmetric tensor A of rank 6 and dimension 7: A(1,2,3,4,5,6), A(1,2,3,4,5,7), A(1,2,3,4,6,7), A(1,2,3,5,6,7) A(1,2,4,5,6,7), A(1,2,3,5,6,7) and A(2,3,4,5,6,7). See a Dec 10 2015 comment. - _Wolfdieter Lang_, Dec 10 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Charles W. Trigg: Mathematical Quickies. New York: Dover Publications, Inc., 1985, p. 11, #32

Crossrefs

Cf. A053135, A053128, A000580 (partial sums), A000581, A000582, A000217, A000292, A000332, A000389 (first differences), A104712 (fifth column, k=6).

Programs

  • Magma
    [Binomial(n,6) : n in [0..50]]; // Wesley Ivan Hurt, Jul 13 2014
    
  • Maple
    A000579 := n->binomial(n,6);
    ZL := [S, {S=Prod(B,B,B,B,B,B,B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n), n=7..40); # Zerinvary Lajos, Mar 13 2007
    A000579:=-1/(z-1)**7; # Simon Plouffe in his 1992 dissertation, referring to offset 0.
    seq(binomial(n,6),n=0..33); # Zerinvary Lajos, Jun 16 2008
    G(x):=x^6*exp(x): f[0]:=G(x): for n from 1 to 39 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/6!,n=6..39); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    Table[Binomial[n, 6], {n, 6, 50}] (* Stefan Steinerberger, Apr 02 2006 *)
    Table[n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5)/720, {n, 0, 100}] (* Artur Jasinski, Dec 02 2007 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,0,0,0,0,0,1},50] (* Harvey P. Dale, Dec 30 2012 *)
    CoefficientList[ Series[ -7x^6/(x-1)^7,{x, 0, 35}], x]/7 (* Robert G. Wilson v, Jan 29 2015 *)
  • PARI
    a(n)=binomial(n,6) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    A000579_list, m = [], [1, -5, 10, -10, 5, -1, 0]
    for _ in range(10**2):
        A000579_list.append(m[-1])
        for i in range(6):
            m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016

Formula

G.f.: x^6/(1-x)^7.
E.g.f.: exp(x)*x^6/720.
a(n) = (n^6 - 15*n^5 + 85*n^4 - 225*n^3 + 274*n^2 - 120*n)/720.
Conjecture: a(n+3) = Sum_{0 <= k, L, m <= n; k + L + m <= n} k*L*m. - Ralf Stephan, May 06 2005
Convolution of the nonnegative numbers (A001477) with the hexagonal numbers (A000389). Also convolution of the triangular numbers (A000217) with the tetrahedral numbers (A000292). - Sergio Falcon, Feb 12 2007
a(n) = n*(n - 1)*(n - 2)*(n - 3)*(n - 4)*(n - 5)/720. - Artur Jasinski, Dec 02 2007, R. J. Mathar, Jul 07 2009
Equals binomial transform of [1, 6, 15, 20, 15, 6, 1, 0, 0, 0, ...]. - Gary W. Adamson, Aug 02 2008
a(0) = 0, a(1) = 0, a(2) = 0, a(3) = 0, a(4) = 0, a(5) = 0, a(6) = 1, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Dec 30 2012
Sum_{n >= 0} a(n)/n! = e/720. Sum_{n >= 5} a(n)/(n-5)! = 4051*e/720. See A067653 regarding the second ratio. - Richard R. Forberg, Dec 26 2013
Sum_{n >= 6} 1/a(n) = 6/5. - Hermann Stamm-Wilbrandt, Jul 13 2014
Sum_{n >= 6} (-1)^(n + 1)/a(n) = 192*log(2) - 661/5 = 0.8842586675... Also see A242023. - Richard R. Forberg, Aug 11 2014
a(n) = a(5-n) for all n in Z. - Michael Somos, Oct 07 2014
0 = a(n)*(+a(n+1) +5*a(n+2)) + a(n+1)*(-7*a(n+1) +a(n+2)) for all n in Z. - Michael Somos, Oct 07 2014
a(n) = 3*C(n+1,6) = 3*A000579(n+1). - Serhat Bulut, Oktay Erkan Temizkan, Mar 13 2015
a(n) = A000292(n-5)*A000292(n-2)/20. - R. J. Mathar, Nov 29 2015

Extensions

Some formulas that referred to other offsets corrected by R. J. Mathar, Jul 07 2009
I changed the offset to 0. This will require some further adjustments to the formulas. - N. J. A. Sloane, Aug 01 2010
Shevelev comment inserted and further adaptations to offset by R. J. Mathar, Aug 03 2010

A007531 a(n) = n*(n-1)*(n-2) (or n!/(n-3)!).

Original entry on oeis.org

0, 0, 0, 6, 24, 60, 120, 210, 336, 504, 720, 990, 1320, 1716, 2184, 2730, 3360, 4080, 4896, 5814, 6840, 7980, 9240, 10626, 12144, 13800, 15600, 17550, 19656, 21924, 24360, 26970, 29760, 32736, 35904, 39270, 42840, 46620, 50616, 54834, 59280, 63960, 68880
Offset: 0

Views

Author

Keywords

Comments

Ed Pegg Jr conjectures that n^3 - n = k! has a solution if and only if n is 2, 3, 5 or 9 (when k is 3, 4, 5 and 6).
Three-dimensional promic (or oblong) numbers, cf. A002378. - Alexandre Wajnberg, Dec 29 2005
Doubled first differences of tritriangular numbers A050534(n) = (1/8)n(n + 1)(n - 1)(n - 2). a(n) = 2*(A050534(n+1) - A050534(n)). - Alexander Adamchuk, Apr 11 2006
If Y is a 4-subset of an n-set X then, for n >= 6, a(n-4) is the number of (n-5)-subsets of X having exactly two elements in common with Y. - Milan Janjic, Dec 28 2007
Convolution of A005843 with A008585. - Reinhard Zumkeller, Mar 07 2009
a(n) = A000578(n) - A000567(n). - Reinhard Zumkeller, Sep 18 2009
For n > 3: a(n) = A173333(n, n-3). - Reinhard Zumkeller, Feb 19 2010
Let H be the n X n Hilbert matrix H(i, j) = 1/(i+j-1) for 1 <= i, j <= n. Let B be the inverse matrix of H. The sum of the elements in row 2 of B equals (-1)^n a(n+1). - T. D. Noe, May 01 2011
a(n) equals 2^(n-1) times the coefficient of log(3) in 2F1(n-2, n-2, n, -2). - John M. Campbell, Jul 16 2011
For n > 2 a(n) = 1/(Integral_{x = 0..Pi/2} (sin(x))^5*(cos(x))^(2*n-5)). - Francesco Daddi, Aug 02 2011
a(n) is the number of functions f:[3] -> [n] that are injective since there are n choices for f(1), (n-1) choices for f(2), and (n-2) choices for f(3). Also, a(n+1) is the number of functions f:[3] -> [n] that are width-2 restricted (that is, the pre-image under f of any element in [n] is of size 2 or less). See "Width-restricted finite functions" link below. - Dennis P. Walsh, Mar 01 2012
This sequence is produced by three consecutive triangular numbers t(n-1), t(n-2) and t(n-3) in the expression 2*t(n-1)*(t(n-2)-t(n-3)) for n = 0, 1, 2, ... - J. M. Bergot, May 14 2012
For n > 2: A020639(a(n)) = 2; A006530(a(n)) = A093074(n-1). - Reinhard Zumkeller, Jul 04 2012
Number of contact points between equal spheres arranged in a tetrahedron with n - 1 spheres in each edge. - Ignacio Larrosa Cañestro, Jan 07 2013
Also for n >= 3, area of Pythagorean triangle in which one side differs from hypotenuse by two units. Consider any Pythagorean triple (2n, n^2-1, n^2+1) where n > 1. The area of such a Pythagorean triangle is n(n^2-1). For n = 2, 3, 4,.. the areas are 6, 24, 60, .... which are the given terms of the series. - Jayanta Basu, Apr 11 2013
Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices (chromatic polynomial) of the complete graph K_3. - Tom Copeland, Apr 05 2014
Starting with 6, 24, 60, 120, ..., a(n) is the number of permutations of length n>=3 avoiding the partially ordered pattern (POP) {1>2} of length 5. That is, the number of length n permutations having no subsequences of length 5 in which the first element is larger than the second element. - Sergey Kitaev, Dec 11 2020
For integer m and positive integer r >= 2, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (2 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section D25.
  • L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 40.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

binomial(n, k): A161680 (k = 2), A000332 (k = 4), A000389 (k = 5), A000579 (k = 6), A000580 (k = 7), A000581 (k = 8), A000582 (k = 9).
Cf. A028896.

Programs

  • Haskell
    a007531 n = product [n-2..n]  -- Reinhard Zumkeller, Jul 04 2012
    
  • Magma
    [n*(n-1)*(n-2): n in [0..40]]; // Vincenzo Librandi, May 02 2011
    
  • Maple
    [seq(6*binomial(n,3),n=0..41)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    Table[n^3 - 3n^2 + 2n, {n, 0, 42}]
    Table[FactorialPower[n, 3], {n, 0, 42}] (* Arkadiusz Wesolowski, Oct 29 2012 *)
  • PARI
    a(n)=n*(n-1)*(n-2)
    
  • Sage
    [n*(n-1)*(n-2) for n in range(40)] # G. C. Greubel, Feb 11 2019

Formula

a(n) = 6*A000292(n-2).
a(n) = Sum_{i=1..n} polygorial(3,i) where polygorial(3,i) = A028896(i-1). - Daniel Dockery (peritus(AT)gmail.com), Jun 16 2003
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6, n > 2. - Zak Seidov, Feb 09 2006
G.f.: 6*x^2/(1-x)^4.
a(-n) = -a(n+2).
1/6 + 3/24 + 5/60 + ... = Sum_{k>=1} (2*k-1)/(k*(k+1)*(k+2)) = 3/4. [Jolley Eq. 213]
a(n+1) = n^3 - n. - Mohammad K. Azarian, Jul 26 2007
E.g.f.: x^3*exp(x). - Geoffrey Critzer, Feb 08 2009
If the first 0 is eliminated, a(n) = floor(n^5/(n^2+1)). - Gary Detlefs, Feb 11 2010
1/6 + 1/24 + 1/60 + ... = Sum_{n>=1} 1/(n*(n+1)*(n+2)) = 1/4. - Mohammad K. Azarian, Dec 29 2010
a(0) = 0, a(n) = a(n-1) + 3*(n-1)*(n-2). - Jean-François Alcover, Jan 08 2013
(a(n+1) - a(n))/6 = A000217(n-2) for n > 0. - J. M. Bergot, Jul 30 2013
Partial sums of A028896. - R. J. Mathar, Aug 28 2014
1/6 + 1/24 + 1/60 + ... + 1/(n*(n+1)*(n+2)) = n*(n+3)/(4*(n+1)*(n+2)). - Christina Steffan, Jul 20 2015
a(n+2)^2 = A005563(n)^3 + A005563(n)^2. - Bruno Berselli, May 03 2018
a(n)*a(n+1) + A000096(n-3)^2 = m^2 (a perfect square), m = ((a(n)+a(n+1))/2)-n. - Ezhilarasu Velayutham, May 21 2019
Sum_{n>=3} (-1)^(n+1)/a(n) = 2*log(2) - 5/4. - Amiram Eldar, Jul 02 2020
For n >= 3, (a(n) + (a(n) + (a(n) + ...)^(1/3))^(1/3))^(1/3) = n - 1. - Paolo Xausa, Apr 09 2022

A000580 a(n) = binomial coefficient C(n,7).

Original entry on oeis.org

1, 8, 36, 120, 330, 792, 1716, 3432, 6435, 11440, 19448, 31824, 50388, 77520, 116280, 170544, 245157, 346104, 480700, 657800, 888030, 1184040, 1560780, 2035800, 2629575, 3365856, 4272048, 5379616, 6724520, 8347680, 10295472
Offset: 7

Views

Author

Keywords

Comments

Figurate numbers based on 7-dimensional regular simplex. According to Hyun Kwang Kim, it appears that every nonnegative integer can be represented as the sum of g = 15 of these numbers. - Jonathan Vos Post, Nov 28 2004
a(n) is the number of terms in the expansion of (Sum_{i=1..8} a_i)^n. - Sergio Falcon, Feb 12 2007
Product of seven consecutive numbers divided by 7!. - Artur Jasinski, Dec 02 2007
In this sequence there are no primes. - Artur Jasinski, Dec 02 2007
For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 6 elements, which is 3*C(n+1,7) (for n>=6), hence a(n) = 3*C(n+1,7) = 3*A000580(n+1). - Serhat Bulut, Mar 13 2015
Partial sums of A000579. In general, the iterated sums S(m, n) = Sum_{j=1..n} S(m-1, j) with input S(1, n) = A000217(n) = 1 + 2 + ... + n are S(m, n) = risefac(n, m+1)/(m+1)! = binomial(n+m, m+1) = Sum_{k = 1..n} risefac(k, m)/m!, with the rising factorials risefac(x, m):= Product_{j=0..m-1} (x+j), for m >= 1. Such iterated sums of arithmetic progressions have been considered by Narayana Pandit (see The MacTutor History of Mathematics archive link, and the Gottwald et al. reference, p. 338, where the name Narayana Daivajna is also used). - Wolfdieter Lang, Mar 20 2015
a(n) = fallfac(n,7)/7! = binomial(n, 7) is also the number of independent components of an antisymmetric tensor of rank 7 and dimension n >= 7 (for n=1..6 this becomes 0). Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
From Juergen Will, Jan 02 2016: (Start)
Number of compositions (ordered partitions) of n+1 into exactly 8 parts.
Number of weak compositions (ordered weak partitions) of n-7 into exactly 8 parts. (End)

Examples

			For A={1,2,3,4,5,6,7}, subsets with 6 elements are {1,2,3,4,5,6}, {1,2,3,4,5,7}, {1,2,3,4,6,7}, {1,2,3,5,6,7}, {1,2,4,5,6,7}, {1,3,4,5,6,7}, {2,3,4,5,6,7}.
Sum of 2 smallest elements of each subset: a(7) = (1+2)+(1+2)+(1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 24 = 3*C(7+1,7) = 3*A000580(7+1). - _Serhat Bulut_, Mar 13 2015
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • S. Gottwald, H.-J. Ilgauds and K.-H. Schlote (eds.), Lexikon bedeutender Mathematiker (in German), Bibliographisches Institut Leipzig, 1990.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Binomial(n,7): n in [7..40]]; // Vincenzo Librandi, Mar 21 2015
    
  • Maple
    ZL := [S, {S=Prod(B,B,B,B,B,B,B,B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n), n=8..38); # Zerinvary Lajos, Mar 13 2007
    A000580:=1/(z-1)**8; # Simon Plouffe in his 1992 dissertation, offset 0.
    seq(binomial(n+7,7)*1^n,n=0..30); # Zerinvary Lajos, Jun 23 2008
    G(x):=x^7*exp(x): f[0]:=G(x): for n from 1 to 38 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n]/7!,n=7..37); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    Table[n(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)/7!, {n, 1, 100}] (* Artur Jasinski, Dec 02 2007 *)
    Binomial[Range[7,40],7] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{1,8,36,120,330,792,1716,3432},40] (* Harvey P. Dale, Nov 28 2011 *)
    CoefficientList[Series[1 / (1-x)^8, {x, 0, 33}], x] (* Vincenzo Librandi, Mar 21 2015 *)
  • PARI
    a(n)=binomial(n,7) \\ Charles R Greathouse IV, Sep 24 2015

Formula

G.f.: x^7/(1-x)^8.
a(n) = (n^7 - 21*n^6 + 175*n^5 - 735*n^4 + 1624*n^3 - 1764*n^2 + 720*n)/5040.
a(n) = -A110555(n+1,7). - Reinhard Zumkeller, Jul 27 2005
Convolution of the nonnegative numbers (A001477) with the sequence A000579. Also convolution of the triangular numbers (A000217) with the sequence A000332. Also convolution of the sequence {1,1,1,1,...} (A000012) with the sequence A000579. Also self-convolution of the tetrahedral numbers (A000292). - Sergio Falcon, Feb 12 2007
a(n+4) = (1/3!)*(d^3/dx^3)S(n,x)|A049310.%20-%20_Wolfdieter%20Lang">{x=2}, n >= 3. One sixth of third derivative of Chebyshev S-polynomials evaluated at x=2. See A049310. - _Wolfdieter Lang, Apr 04 2007
a(n) = n(n-1)(n-2)(n-3)(n-4)(n-5)(n-6)/7!. - Artur Jasinski, Dec 02 2007, R. J. Mathar, Jul 07 2009
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) with a(7)=1, a(8)=8, a(9)=36, a(10)=120, a(11)=330, a(12)=792, a(13)=1716, a(14)=3432. - Harvey P. Dale, Nov 28 2011
a(n) = 3*C(n+1,7) = 3*A000580(n+1). - Serhat Bulut, Mar 13 2015
From Wolfdieter Lang, Mar 21 2015: (Start)
a(n) = A104712(n, 7), n >= 7.
a(n+6) = sum(A000579(j+5), j = 1..n), n >= 1. See the Mar 20 2015 comment above. (End)
Sum_{k >= 7} 1/a(k) = 7/6. - Tom Edgar, Sep 10 2015
Sum_{n>=7} (-1)^(n+1)/a(n) = A001787(7)*log(2) - A242091(7)/6! = 448*log(2) - 9289/30 = 0.8966035575... - Amiram Eldar, Dec 10 2020

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 17 2000
Some formulas that referred to other offsets corrected by R. J. Mathar, Jul 07 2009

A074909 Running sum of Pascal's triangle (A007318), or beheaded Pascal's triangle read by beheaded rows.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 10, 10, 5, 1, 6, 15, 20, 15, 6, 1, 7, 21, 35, 35, 21, 7, 1, 8, 28, 56, 70, 56, 28, 8, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11
Offset: 0

Views

Author

Wouter Meeussen, Oct 01 2002

Keywords

Comments

This sequence counts the "almost triangular" partitions of n. A partition is triangular if it is of the form 0+1+2+...+k. Examples: 3=0+1+2, 6=0+1+2+3. An "almost triangular" partition is a triangular partition with at most 1 added to each of the parts. Examples: 7 = 1+1+2+3 = 0+2+2+3 = 0+1+3+3 = 0+1+2+4. Thus a(7)=4. 8 = 1+2+2+3 = 1+1+3+3 = 1+1+2+4 = 0+2+3+3 = 0+2+2+4 = 0+1+3+4 so a(8)=6. - Moshe Shmuel Newman, Dec 19 2002
The "almost triangular" partitions are the ones cycled by the operation of "Bulgarian solitaire", as defined by Martin Gardner.
Start with A007318 - I (I = Identity matrix), then delete right border of zeros. - Gary W. Adamson, Jun 15 2007
Also the number of increasing acyclic functions from {1..n-k+1} to {1..n+2}. A function f is acyclic if for every subset B of the domain the image of B under f does not equal B. For example, T(3,1)=4 since there are exactly 4 increasing acyclic functions from {1,2,3} to {1,2,3,4,5}: f1={(1,2),(2,3),(3,4)}, f2={(1,2),(2,3),(3,5)}, f3={(1,2),(2,4),(3,5)} and f4={(1,3),(2,4),(4,5)}. - Dennis P. Walsh, Mar 14 2008
Second Bernoulli polynomials are (from A164555 instead of A027641) B2(n,x) = 1; 1/2, 1; 1/6, 1, 1; 0, 1/2, 3/2, 1; -1/30, 0, 1, 2, 1; 0, -1/6, 0, 5/3, 5/2, 1; ... . Then (B2(n,x)/A002260) = 1; 1/2, 1/2; 1/6, 1/2, 1/3; 0, 1/4, 1/2, 1/4; -1/30, 0, 1/3, 1/2, 1/5; 0, -1/12, 0, 5/12, 1/2, 1/6; ... . See (from Faulhaber 1631) Jacob Bernoulli Summae Potestatum (sum of powers) in A159688. Inverse polynomials are 1; -1, 2; 1, -3, 3; -1, 4, -6, 4; ... = A074909 with negative even diagonals. Reflected A053382/A053383 = reflected B(n,x) = RB(n,x) = 1; -1/2, 1; 1/6, -1, 1; 0, 1/2, -3/2, 1; ... . A074909 is inverse of RB(n,x)/A002260 = 1; -1/2, 1/2; 1/6, -1/2, 1/3; 0, 1/4, -1/2, 1/4; ... . - Paul Curtz, Jun 21 2010
A054143 is the fission of the polynomial sequence (p(n,x)) given by p(n,x) = x^n + x^(n-1) + ... + x + 1 by the polynomial sequence ((x+1)^n). See A193842 for the definition of fission. - Clark Kimberling, Aug 07 2011
Reversal of A135278. - Philippe Deléham, Feb 11 2012
For a closed-form formula for arbitrary left and right borders of Pascal-like triangles see A228196. - Boris Putievskiy, Aug 19 2013
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
From A238363, the operator equation d/d(:xD:)f(xD)={exp[d/d(xD)]-1}f(xD) = f(xD+1)-f(xD) follows. Choosing f(x) = x^n and using :xD:^n/n! = binomial(xD,n) and (xD)^n = Bell(n,:xD:), the Bell polynomials of A008277, it follows that the lower triangular matrix [padded A074909]
A) = [St2]*[dP]*[St1] = A048993*A132440*[padded A008275]
B) = [St2]*[dP]*[St2]^(-1)
C) = [St1]^(-1)*[dP]*[St1],
where [St1]=padded A008275 just as [St2]=A048993=padded A008277 whereas [padded A074909]=A007318-I with I=identity matrix. - Tom Copeland, Apr 25 2014
T(n,k) generated by m-gon expansions in the case of odd m with "vertex to side" version or even m with "vertex to vertes" version. Refer to triangle expansions in A061777 and A101946 (and their companions for m-gons) which are "vertex to vertex" and "vertex to side" versions respectively. The label values at each iteration can be arranged as a triangle. Any m-gon can also be arranged as the same triangle with conditions: (i) m is odd and expansion is "vertex to side" version or (ii) m is even and expansion is "vertex to vertex" version. m*Sum_{i=1..k} T(n,k) gives the total label value at the n-th iteration. See also A247976. Vertex to vertex: A061777, A247618, A247619, A247620. Vertex to side: A101946, A247903, A247904, A247905. - Kival Ngaokrajang Sep 28 2014
From Tom Copeland, Nov 12 2014: (Start)
With P(n,x) = [(x+1)^(n+1)-x^(n+1)], the row polynomials of this entry, Up(n,x) = P(n,x)/(n+1) form an Appell sequence of polynomials that are the umbral compositional inverses of the Bernoulli polynomials B(n,x), i.e., B[n,Up(.,x)] = x^n = Up[n,B(.,x)] under umbral substitution, e.g., B(.,x)^n = B(n,x).
The e.g.f. for the Bernoulli polynomials is [t/(e^t - 1)] e^(x*t), and for Up(n,x) it's exp[Up(.,x)t] = [(e^t - 1)/t] e^(x*t).
Another g.f. is G(t,x) = log[(1-x*t)/(1-(1+x)*t)] = log[1 + t /(1 + -(1+x)t)] = t/(1-t*Up(.,x)) = Up(0,x)*t + Up(1,x)*t^2 + Up(2,x)*t^3 + ... = t + (1+2x)/2 t^2 + (1+3x+3x^2)/3 t^3 + (1+4x+6x^2+4x^3)/4 t^4 + ... = -log(1-t*P(.,x)), expressed umbrally.
The inverse, Ginv(t,x), in t of the g.f. may be found in A008292 from Copeland's list of formulas (Sep 2014) with a=(1+x) and b=x. This relates these two sets of polynomials to algebraic geometry, e.g., elliptic curves, trigonometric expansions, Chebyshev polynomials, and the combinatorics of permutahedra and their duals.
Ginv(t,x) = [e^((1+x)t) - e^(xt)] / [(1+x) * e^((1+x)t) - x * e^(xt)] = [e^(t/2) - e^(-t/2)] / [(1+x)e^(t/2) - x*e^(-t/2)] = (e^t - 1) / [1 + (1+x) (e^t - 1)] = t - (1 + 2 x) t^2/2! + (1 + 6 x + 6 x^2) t^3/3! - (1 + 14 x + 36 x^2 + 24 x^3) t^4/4! + ... = -exp[-Perm(.,x)t], where Perm(n,x) are the reverse face polynomials, or reverse f-vectors, for the permutahedra, i.e., the face polynomials for the duals of the permutahedra. Cf. A090582, A019538, A049019, A133314, A135278.
With L(t,x) = t/(1+t*x) with inverse L(t,-x) in t, and Cinv(t) = e^t - 1 with inverse C(t) = log(1 + t). Then Ginv(t,x) = L[Cinv(t),(1+x)] and G(t,x) = C[L[t,-(1+x)]]. Note L is the special linear fractional (Mobius) transformation.
Connections among the combinatorics of the permutahedra, simplices (cf. A135278), and the associahedra can be made through the Lagrange inversion formula (LIF) of A133437 applied to G(t,x) (cf. A111785 and the Schroeder paths A126216 also), and similarly for the LIF A134685 applied to Ginv(t,x) involving the simplicial Whitehouse complex, phylogenetic trees, and other structures. (See also the LIFs A145271 and A133932). (End)
R = x - exp[-[B(n+1)/(n+1)]D] = x - exp[zeta(-n)D] is the raising operator for this normalized sequence UP(n,x) = P(n,x) / (n+1), that is, R UP(n,x) = UP(n+1,x), where D = d/dx, zeta(-n) is the value of the Riemann zeta function evaluated at -n, and B(n) is the n-th Bernoulli number, or constant B(n,0) of the Bernoulli polynomials. The raising operator for the Bernoulli polynomials is then x + exp[-[B(n+1)/(n+1)]D]. [Note added Nov 25 2014: exp[zeta(-n)D] is abbreviation of exp(a.D) with (a.)^n = a_n = zeta(-n)]. - Tom Copeland, Nov 17 2014
The diagonals T(n, n-m), for n >= m, give the m-th iterated partial sum of the positive integers; that is A000027(n+1), A000217(n), A000292(n-1), A000332(n+1), A000389(n+1), A000579(n+1), A000580(n+1), A000581(n+1), A000582(n+1), ... . - Wolfdieter Lang, May 21 2015
The transpose gives the numerical coefficients of the Maurer-Cartan form matrix for the general linear group GL(n,1) (cf. Olver, but note that the formula at the bottom of p. 6 has an error--the 12 should be a 15). - Tom Copeland, Nov 05 2015
The left invariant Maurer-Cartan form polynomial on p. 7 of the Olver paper for the group GL^n(1) is essentially a binomial convolution of the row polynomials of this entry with those of A133314, or equivalently the row polynomials generated by the product of the e.g.f. of this entry with that of A133314, with some reindexing. - Tom Copeland, Jul 03 2018
From Tom Copeland, Jul 10 2018: (Start)
The first column of the inverse matrix is the sequence of Bernoulli numbers, which follows from the umbral definition of the Bernoulli polynomials (B.(0) + x)^n = B_n(x) evaluated at x = 1 and the relation B_n(0) = B_n(1) for n > 1 and -B_1(0) = 1/2 = B_1(1), so the Bernoulli numbers can be calculated using Cramer's rule acting on this entry's matrix and, therefore, from the ratios of volumes of parallelepipeds determined by the columns of this entry's square submatrices. - Tom Copeland, Jul 10 2018
Umbrally composing the row polynomials with B_n(x), the Bernoulli polynomials, gives (B.(x)+1)^(n+1) - (B.(x))^(n+1) = d[x^(n+1)]/dx = (n+1)*x^n, so multiplying this entry as a lower triangular matrix (LTM) by the LTM of the coefficients of the Bernoulli polynomials gives the diagonal matrix of the natural numbers. Then the inverse matrix of this entry has the elements B_(n,k)/(k+1), where B_(n,k) is the coefficient of x^k for B_n(x), and the e.g.f. (1/x) (e^(xt)-1)/(e^t-1). (End)

Examples

			T(4,2) = 0+0+1+3+6 = 10 = binomial(5, 2).
Triangle T(n,k) begins:
n\k 0  1  2   3   4   5   6   7   8   9 10 11
0:  1
1:  1  2
2:  1  3  3
3:  1  4  6   4
4:  1  5 10  10   5
5:  1  6 15  20  15   6
6:  1  7 21  35  35  21   7
7:  1  8 28  56  70  56  28   8
8:  1  9 36  84 126 126  84  36  9
9:  1 10 45 120 210 252 210 120 45   10
10: 1 11 55 165 330 462 462 330 165  55 11
11: 1 12 66 220 495 792 924 792 495 220 66 12
... Reformatted. - _Wolfdieter Lang_, Nov 04 2014
.
Can be seen as the square array A(n, k) = binomial(n + k + 1, n) read by descending antidiagonals. A(n, k) is the number of monotone nondecreasing functions f: {1,2,..,k} -> {1,2,..,n}. - _Peter Luschny_, Aug 25 2019
[0]  1,  1,   1,   1,    1,    1,     1,     1,     1, ... A000012
[1]  2,  3,   4,   5,    6,    7,     8,     9,    10, ... A000027
[2]  3,  6,  10,  15,   21,   28,    36,    45,    55, ... A000217
[3]  4, 10,  20,  35,   56,   84,   120,   165,   220, ... A000292
[4]  5, 15,  35,  70,  126,  210,   330,   495,   715, ... A000332
[5]  6, 21,  56, 126,  252,  462,   792,  1287,  2002, ... A000389
[6]  7, 28,  84, 210,  462,  924,  1716,  3003,  5005, ... A000579
[7]  8, 36, 120, 330,  792, 1716,  3432,  6435, 11440, ... A000580
[8]  9, 45, 165, 495, 1287, 3003,  6435, 12870, 24310, ... A000581
[9] 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, ... A000582
		

Crossrefs

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Binomial(n+1,k)))); # Muniru A Asiru, Jul 10 2018
    
  • Haskell
    a074909 n k = a074909_tabl !! n !! k
    a074909_row n = a074909_tabl !! n
    a074909_tabl = iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [1])) [1]
    -- Reinhard Zumkeller, Feb 25 2012
    
  • Magma
    /* As triangle */ [[Binomial(n+1,k): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 22 2018
    
  • Maple
    A074909 := proc(n,k)
        if k > n or k < 0 then
            0;
        else
            binomial(n+1,k) ;
        end if;
    end proc: # Zerinvary Lajos, Nov 09 2006
  • Mathematica
    Flatten[Join[{1}, Table[Sum[Binomial[k, m], {k, 0, n}], {n, 0, 12}, {m, 0, n}] ]] (* or *) Flatten[Join[{1}, Table[Binomial[n, m], {n, 12}, {m, n}]]]
  • PARI
    print1(1);for(n=1,10,for(k=1,n,print1(", "binomial(n,k)))) \\ Charles R Greathouse IV, Mar 26 2013
    
  • Python
    from math import comb, isqrt
    def A074909(n): return comb(r:=(m:=isqrt(k:=n+1<<1))+(k>m*(m+1)),n-comb(r,2)) # Chai Wah Wu, Nov 12 2024

Formula

T(n, k) = Sum_{i=0..n} C(i, n-k) = C(n+1, k).
Row n has g.f. (1+x)^(n+1)-x^(n+1).
E.g.f.: ((1+x)*e^t - x) e^(x*t). The row polynomials p_n(x) satisfy dp_n(x)/dx = (n+1)*p_(n-1)(x). - Tom Copeland, Jul 10 2018
T(n, k) = T(n-1, k-1) + T(n-1, k) for k: 0Reinhard Zumkeller, Apr 18 2005
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) - T(n-2,k-2), T(0,0)=1, T(1,0)=1, T(1,1)=2, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 27 2013
G.f. for column k (with leading zeros): x^(k-1)*(1/(1-x)^(k+1)-1), k >= 0. - Wolfdieter Lang, Nov 04 2014
Up(n, x+y) = (Up(.,x)+ y)^n = Sum_{k=0..n} binomial(n,k) Up(k,x)*y^(n-k), where Up(n,x) = ((x+1)^(n+1)-x^(n+1)) / (n+1) = P(n,x)/(n+1) with P(n,x) the n-th row polynomial of this entry. dUp(n,x)/dx = n * Up(n-1,x) and dP(n,x)/dx = (n+1)*P(n-1,x). - Tom Copeland, Nov 14 2014
The o.g.f. GF(x,t) = x / ((1-t*x)*(1-(1+t)x)) = x + (1+2t)*x^2 + (1+3t+3t^2)*x^3 + ... has the inverse GFinv(x,t) = (1+(1+2t)x-sqrt(1+(1+2t)*2x+x^2))/(2t(1+t)x) in x about 0, which generates the row polynomials (mod row signs) of A033282. The reciprocal of the o.g.f., i.e., x/GF(x,t), gives the free cumulants (1, -(1+2t) , t(1+t) , 0, 0, ...) associated with the moments defined by GFinv, and, in fact, these free cumulants generate these moments through the noncrossing partitions of A134264. The associated e.g.f. and relations to Grassmannians are described in A248727, whose polynomials are the basis for an Appell sequence of polynomials that are umbral compositional inverses of the Appell sequence formed from this entry's polynomials (distinct from the one described in the comments above, without the normalizing reciprocal). - Tom Copeland, Jan 07 2015
T(n, k) = (1/k!) * Sum_{i=0..k} Stirling1(k,i)*(n+1)^i, for 0<=k<=n. - Ridouane Oudra, Oct 23 2022

Extensions

I added an initial 1 at the suggestion of Paul Barry, which makes the triangle a little nicer but may mean that some of the formulas will now need adjusting. - N. J. A. Sloane, Feb 11 2003
Formula section edited, checked and corrected by Wolfdieter Lang, Nov 04 2014

A000582 a(n) = binomial coefficient C(n,9).

Original entry on oeis.org

1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378, 167960, 293930, 497420, 817190, 1307504, 2042975, 3124550, 4686825, 6906900, 10015005, 14307150, 20160075, 28048800, 38567100, 52451256, 70607460, 94143280, 124403620, 163011640, 211915132
Offset: 9

Views

Author

Keywords

Comments

Figurate numbers based on 9-dimensional regular simplex. - Jonathan Vos Post, Nov 28 2004
Product of 9 consecutive numbers divided by 9!. - Artur Jasinski, Dec 02 2007
In this sequence there are no primes. - Artur Jasinski, Dec 02 2007
a(9+n) gives the number of words with n letters over the alphabet {0,1,..,9} such that these letters are read from left to right in weakly increasing (nondecreasing) order. - R. J. Cano, Jul 20 2014
a(n) = fallfac(n, 9)/9! = binomial(n, 9) is also the number of independent components of an antisymmetric tensor of rank 9 and dimension n >= 9 (for n=1..8 this becomes 0). Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
From Juergen Will, Jan 23 2016: (Start)
Number of compositions (ordered partitions) of n+1 into exactly 10 parts.
Number of weak compositions (ordered weak partitions) of n-9 into exactly 10 parts. (End)
Number of integers divisible by 9 in the interval [0, 10^(n-8)-1]. - Miquel Cerda, Jul 02 2017

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

G.f.: x^9/(1-x)^10.
a(n) = -A110555(n+1, 9). - Reinhard Zumkeller, Jul 27 2005
a(n+8) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)/9!. - Artur Jasinski, Dec 02 2007; R. J. Mathar, Jul 07 2009
Sum_{k>=9} 1/a(k) = 9/8. - Tom Edgar, Sep 10 2015
Sum_{n>=9} (-1)^(n+1)/a(n) = A001787(9)*log(2) - A242091(9)/8! = 2304*log(2) - 446907/280 = 0.9146754386... - Amiram Eldar, Dec 10 2020

Extensions

Formulas referring to other offsets rewritten by R. J. Mathar, Jul 07 2009

A110555 Triangle of partial sums of alternating binomial coefficients: T(n, k) = Sum_{j=0..k} binomial(n, j)*(-1)^j, for n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -3, 3, -1, 0, 1, -4, 6, -4, 1, 0, 1, -5, 10, -10, 5, -1, 0, 1, -6, 15, -20, 15, -6, 1, 0, 1, -7, 21, -35, 35, -21, 7, -1, 0, 1, -8, 28, -56, 70, -56, 28, -8, 1, 0, 1, -9, 36, -84, 126, -126, 84, -36, 9, -1, 0, 1, -10, 45, -120, 210, -252, 210, -120
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 27 2005

Keywords

Examples

			Triangle T(n, k) starts:
  [0] 1;
  [1] 1,  0;
  [2] 1, -1,  0;
  [3] 1, -2,  1,   0;
  [4] 1, -3,  3,  -1,  0;
  [5] 1, -4,  6,  -4,  1,   0;
  [6] 1, -5, 10, -10,  5,  -1,  0;
  [7] 1, -6, 15, -20, 15,  -6,  1,  0;
  [8] 1, -7, 21, -35, 35, -21,  7, -1,  0.
		

Crossrefs

T(n,1) = -n + 1 for n>0;
T(n,2) = A000217(n-2) for n > 1;
T(n,3) = -A000292(n-4) for n > 2;
T(n,4) = A000332(n-1) for n > 3;
T(n,5) = -A000389(n-1) for n > 5;
T(n,6) = A000579(n-1) for n > 6;
T(n,7) = -A000580(n-1) for n > 7;
T(n,8) = A000581(n-1) for n > 8;
T(n,9) = -A000582(n-1) for n > 9;
T(n,10) = A001287(n-1) for n > 10;
T(n,11) = -A001288(n-1) for n > 11;
T(n,12) = A010965(n-1) for n > 12;
T(n,13) = -A010966(n-1) for n > 13;
T(n,14) = A010967(n-1) for n > 14;
T(n,15) = -A010968(n-1) for n > 15;
T(n,16) = A010969(n-1) for n > 16.
Cf. A071919 (variant), A000007 (row sums), A110556 (central terms).

Programs

  • Maple
    T := (n, k) -> (-1)^k * binomial(n-1, k):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..7); # Peter Luschny, Apr 13 2023
  • Mathematica
    T[0, 0] := 1;  T[n_, n_] := 0; T[n_, k_] := (-1)^k*Binomial[n - 1, k]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* G. C. Greubel, Aug 31 2017 *)
  • PARI
    concat(1, for(n=1,10, for(k=0,n, print1(if(k != n, (-1)^k*binomial(n-1,k), 0), ", ")))) \\ G. C. Greubel, Aug 31 2017

Formula

T(n, 0) = 1, T(n, n) = 0^n, T(n, k) = -T(n-1, k-1) + T(n-1, k), for 0 < k < n.
T(n, k) = binomial(n-1, k)*(-1)^k, 0 <= k < n, T(n, n) = 0^n.
T(n, n-k-1) = -T(n, k), for 0 < k < n.
T(n, k) = A071919(n, k)*(-1)^k and A071919(n, k) = abs(T(n, k)).
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [0, -1, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 05 2005
G.f.: (1 + x*y) / (1 + x*y - x). - R. J. Mathar, Aug 11 2015

Extensions

Typo in name corrected by Andrey Zabolotskiy, Feb 22 2022
Offset corrected by Peter Luschny, Apr 13 2023
Showing 1-10 of 53 results. Next