T(n, k) = Sum_{j=k..n} binomial(j,k) = binomial(n+1, k+1), n >= k >= 0, else 0. (Partial sum of column k of
A007318 (Pascal), or summation on the upper binomial index (Graham et al. (GKP), eq. (5.10). For the GKP reference see
A007318.) -
Wolfdieter Lang, Aug 22 2012
E.g.f.: 1/x*((1 + x)*exp(t*(1 + x)) - exp(t)) = 1 + (2 + x)*t + (3 + 3*x + x^2)*t^2/2! + .... The infinitesimal generator for this triangle has the sequence [2,3,4,...] on the main subdiagonal and 0's elsewhere. -
Peter Bala, Jul 16 2013
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0)=1, T(1,0)=2, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. -
Philippe Deléham, Dec 27 2013
[From Copeland's 2007 and 2008 comments]
A) O.g.f.: 1 / { [ 1 - t * x/(1-x) ] * (1-x)^2 } (same as Deleham's).
B) The infinitesimal generator for T is given in
A132681 with m=1 (same as Bala's), which makes connections to the ubiquitous associated Laguerre polynomials of integer orders, for this case the Laguerre polynomials of order one L(n,-t,1).
C) O.g.f. of row e.g.f.s: Sum_{n>=0} L(n,-t,1) x^n = exp[t*x/(1-x)]/(1-x)^2 = 1 + (2+t)x + (3+3*t+t^2/2!)x^2 + (4+6*t+4*t^2/2!+t^3/3!)x^3+ ... .
D) E.g.f. of row o.g.f.s: ((1+t)*exp((1+t)*x)-exp(x))/t (same as Bala's).
E) E.g.f. for T(n,k)*a(n-k): {(a+t) exp[(a+t)x] - a exp(a x)}/t, umbrally. For example, for a(k)=2^k, the e.g.f. for the row o.g.f.s is {(2+t) exp[(2+t)x] - 2 exp(2x)}/t.
(End)
With different indexing
A) O.g.f. by row: [(1+t)^n-1]/t.
B) O.g.f. of row o.g.f.s: {1/[1-(1+t)*x] - 1/(1-x)}/t.
C) E.g.f. of row o.g.f.s: {exp[(1+t)*x]-exp(x)}/t.
These generating functions are related to row e.g.f.s of
A111492. (End)
A) U(x,s,t)= x^2/[(1-t*x)(1-(s+t)x)] = Sum_{n >= 0} F(n,s,t)x^(n+2) is a generating function for bivariate row polynomials of T, e.g., F(2,s,t)= s^2 + 3s*t + 3t^2 (Buchstaber, 2008).
B) dU/dt=x^2 dU/dx with U(x,s,0)= x^2/(1-s*x) (Buchstaber, 2008).
C) U(x,s,t) = exp(t*x^2*d/dx)U(x,s,0) = U(x/(1-t*x),s,0).
D) U(x,s,t) = Sum[n >= 0, (t*x)^n L(n,-:xD:,-1)] U(x,s,0), where (:xD:)^k=x^k*(d/dx)^k and L(n,x,-1) are the Laguerre polynomials of order -1, related to normalized Lah numbers. (End)
E.g.f. satisfies the differential equation d/dt(e.g.f.(x,t)) = (x+1)*e.g.f.(x,t) + exp(t). -
Vincent J. Matsko, Jul 18 2015
The e.g.f. of the Norlund generalized Bernoulli (Appell) polynomials of order m, NB(n,x;m), is given by exponentiation of the e.g.f. of the Bernoulli numbers, i.e., multiple binomial self-convolutions of the Bernoulli numbers, through the e.g.f. exp[NB(.,x;m)t] = (t/(e^t - 1))^(m+1) * e^(xt). Norlund gave the relation to the factorials (x-1)!/(x-1-n)! = (x-1) ... (x-n) = NB(n,x;n), so T(n,m) = NB(m+1,n+2;m+1)/(m+1)!. -
Tom Copeland, Oct 01 2015
Recurrences from the A- and Z- sequences for the Riordan triangle (see the W. Lang link under
A006232 with references), which are A(n) =
A019590(n+1), [1, 1, repeat (0)] and Z(n) = (-1)^(n+1)*
A054977(n), [2, repeat(-1, 1)]:
T(0, 0) = 1, T(n, k) = 0 for n < k, and T(n, 0) = Sum_{j=0..n-1} Z(j)*T(n-1, j), for n >= 1, and T(n, k) = T(n-1, k-1) + T(n-1, k), for n >= m >= 1.
Boas-Buck recurrence for columns (see the Aug 10 2017 remark in
A036521 also for references):
T(n, k) = ((2 + k)/(n - k))*Sum_{j=k..n-1} T(j, k), for n >= 1, k = 0, 1, ..., n-1, and input T(n, n) = 1, for n >= 0, (the BB-sequences are alpha(n) = 2 and beta(n) = 1). (End)
T(n, k) = [x^k] Sum_{j=0..n} (x+1)^j. -
Peter Luschny, Jul 09 2019
Comments