A053176 Primes p such that 2p+1 is composite.
7, 13, 17, 19, 31, 37, 43, 47, 59, 61, 67, 71, 73, 79, 97, 101, 103, 107, 109, 127, 137, 139, 149, 151, 157, 163, 167, 181, 193, 197, 199, 211, 223, 227, 229, 241, 257, 263, 269, 271, 277, 283, 307, 311, 313, 317, 331, 337, 347, 349, 353, 367, 373, 379, 383
Offset: 1
Examples
17 is a term because 2*17 + 1 = 35 is composite.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Lambert A'Campo, Every 7-Dimensional Abelian Variety over the p-adic Numbers has a Reducible L-adic Galois Representation, arXiv:2006.06737 [math.NT], 2020.
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(12200) | not IsPrime(2*p+1)]; // Vincenzo Librandi, Jun 18 2015
-
Mathematica
Select[Prime[Range[1000]], ! PrimeQ[2 # + 1] &] (* Vincenzo Librandi, Jun 18 2015 *)
-
PARI
list(lim)=select(p->!isprime(2*p+1),primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
Formula
a(n) ~ n log n. - Charles R Greathouse IV, Feb 20 2012
Comments