cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053209 Row sums of A051598.

Original entry on oeis.org

1, 5, 14, 32, 68, 140, 284, 572, 1148, 2300, 4604, 9212, 18428, 36860, 73724, 147452, 294908, 589820, 1179644, 2359292, 4718588, 9437180, 18874364, 37748732, 75497468, 150994940, 301989884, 603979772, 1207959548, 2415919100
Offset: 0

Views

Author

Asher Auel, Dec 14 1999

Keywords

Crossrefs

Programs

  • Magma
    I:=[5,14]; [1] cat [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 03 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+x)^2)/((1-x)*(1-2*x))); // Marius A. Burtea, Oct 15 2019
  • Mathematica
    Join[{1}, LinearRecurrence[{3, -2}, {5, 14}, 50]] (* G. C. Greubel, Sep 03 2018 *)
  • PARI
    m=30; v=concat([5,14], vector(m-2)); for(n=3, m, v[n] = 3*v[n-1] -2*v[n-2]); concat([1], v) \\ G. C. Greubel, Sep 03 2018
    

Formula

a(0) = 1, a(1) = 5, a(n+1) = 2*a(n) + 4, for n >= 1.
a(n) = 9*2^(n-1) - 4, n >= 1.
a(n) = 4*n + Sum[i = 0, n - 1] a(i). - Jon Perry, Nov 20 2012
a(n) = A048491(n)/2, n>0. - Philippe Deléham, Apr 15 2013
G.f.: (1+x)^2/((1-x)*(1-2*x)). - Philippe Deléham, Apr 15 2013
a(n) = 3*a(n-1) - 2*a(n-2) with a(0)=1, a(1)=5, a(2)=14. - Philippe Deléham, Apr 15 2013
E.g.f.: (1 - 8*exp(x) + 9*exp(2*x))/2. - Stefano Spezia, Sep 28 2022