cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A358395 Odd numbers k such that sigma(k) + sigma(k+2) > 2*sigma(k+1); odd terms in A053228.

Original entry on oeis.org

1125, 1573, 1953, 2205, 2385, 3465, 5185, 5353, 5773, 6433, 6613, 6825, 7245, 7425, 7665, 7693, 8505, 8925, 9133, 9205, 9405, 9945, 10393, 10773, 11473, 11653, 12285, 12493, 12705, 13473, 13585, 13725, 14025, 15013, 15145, 15433, 16065, 16245, 16905, 17253, 17325, 17953
Offset: 1

Views

Author

Jianing Song, Nov 13 2022

Keywords

Comments

Odd numbers k such that A053223(k) > 0.
Terms congruent to 5 modulo 6 exist but must be very large: for example A053223(670173643268502741420822977335461337017377351999597045900203591953125) = 1311786588705365455963902347308393766941056366825184647502989937872.
A number m coprime to 2 and 3 such that sigma(m)/m >= 3 (m = A358412(3) = A358413(2) = 5^4*7^3*11^2*13^2*17*...*157 ~ 5.16404*10^66 is the smallest such number; see the link from Mercurial, the Spectre) produces a family of infinitely many terms congruent to 5 modulo 6 in this sequence, by Dirichlet's theorem on arithmetic progressions. Concretely, let k == 5 (mod 6), N(t) = t*k*(k+2) + (k+1)/6 for t >= 0, then:
(i) If sigma(k)/k >= 3. If N(t) is prime and 6*N(t)+1 is composite, then sigma(6*N(t)-1) >= 3*(6*N(t)-1), sigma(6*N(t)) = 12*(N(t)+1) and sigma(6*N(t)+1) >= 1+sqrt(6*N(t)+1)+(6*N(t)+1), so A053223(6*N(t)-1) >= sqrt(6*N(t)+1) - 25 >= sqrt(k+2) - 25 > 0.
(ii) If sigma(k+2)/(k+2) >= 3. If N(t) is prime and 6*N(t)-1 is composite, then sigma(6*N(t)+1) >= 3*(6*N(t)+1), sigma(6*N(t)) = 12*(N(t)+1) and sigma(6*N(t)-1) >= 1+sqrt(6*N(t)-1)+(6*N(t)-1), so A053223(6*N(t)-1) >= sqrt(6*N(t)-1) - 21 >= sqrt(k) - 21 > 0.

Examples

			1125 is a term since sigma(1126) = 1692 is smaller than the average of sigma(1125) = 2028 and sigma(1127) = 1368.
		

Crossrefs

Cf. A053228, A053223, A000203 (sigma), A358396.
Cf. also A358412, A358413.

Programs

  • PARI
    isA358395(n) = (n%2) && (sigma(n) + sigma(n+2) > 2*sigma(n+1))

A053223 Second differences of sigma(n).

Original entry on oeis.org

-1, 2, -4, 7, -10, 11, -9, 7, -11, 22, -30, 24, -10, 7, -20, 34, -40, 41, -32, 14, -16, 48, -65, 40, -13, 18, -42, 68, -82, 71, -46, 21, -12, 49, -96, 75, -26, 38, -82, 102, -106, 92, -46, 0, -18, 100, -143, 103, -57, 47, -70, 110, -114, 96, -88, 50, -40, 138, -214, 140, -26, 15, -66
Offset: 1

Views

Author

Asher Auel, Jan 06 2000

Keywords

Crossrefs

Indices of 0: A099632 - 1.

Programs

  • Magma
    [DivisorSigma(1, n+2) - 2*DivisorSigma(1,n+1) + DivisorSigma(1, n): n in [1..100]]; // G. C. Greubel, Sep 03 2018
  • Mathematica
    Table[DivisorSigma[1,n+2] - 2*DivisorSigma[1,n+1] + DivisorSigma[1,n], {n,1,100}] (* G. C. Greubel, Sep 03 2018 *)
  • PARI
    a(n)=sigma(n+2)-2*sigma(n+1)+sigma(n) \\ Charles R Greathouse IV, Mar 09 2014
    

Formula

G.f.: -1 - 1/x + (1 - x)^2*Sum_{k>=1} k*x^(k-2)/(1 - x^k). - Ilya Gutkovskiy, Jan 29 2017

A053229 Numbers n for which second differences of sigma(n) are negative.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 104, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129
Offset: 1

Views

Author

Asher Auel, Dec 10 2000

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): seq(`if`(sigma(i+2)-sigma(i+1)<(sigma(i+1)-sigma(i)),i,print( )),i=1..133);
  • Mathematica
    Select[Range[150], DivisorSigma[1, # + 2] - DivisorSigma[1, # + 1] < (DivisorSigma[1, # + 1] - DivisorSigma[1, #]) &] (* G. C. Greubel, Sep 03 2018 *)

A053247 Second differences of sigma(n) that are positive.

Original entry on oeis.org

2, 7, 11, 7, 22, 24, 7, 34, 41, 14, 48, 40, 18, 68, 71, 21, 49, 75, 38, 102, 92, 100, 103, 47, 110, 96, 50, 138, 140, 15, 103, 134, 78, 195, 161, 6, 116, 194, 70, 182, 140, 72, 234, 178, 56, 156, 227, 76, 229, 218, 226, 276, 160, 260, 162, 26, 252, 280, 74, 224
Offset: 1

Views

Author

Asher Auel, Jan 11 2000

Keywords

Crossrefs

Programs

  • Maple
    with (numtheory): f := [seq( sigma(i+2) - sigma(i+1) - (sigma(i+1) - sigma(i)), i=1..200)];
    seq(`if`(f[i] > 0,f[i],print( )), i=1..200);
  • Mathematica
    Select[Differences[DivisorSigma[1,Range[150]],2],#>0&] (* Harvey P. Dale, May 10 2012 *)

Formula

a(n) = A053223(A053228(n))
Showing 1-4 of 4 results.