cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053310 a(n) = (n+3)*binomial(n+8, 8)/3.

Original entry on oeis.org

1, 12, 75, 330, 1155, 3432, 9009, 21450, 47190, 97240, 189618, 352716, 629850, 1085280, 1812030, 2941884, 4657983, 7210500, 10935925, 16280550, 23828805, 34337160, 48774375, 68368950, 94664700, 129585456, 175509972, 235358200
Offset: 0

Views

Author

Barry E. Williams, Mar 06 2000

Keywords

Comments

If Y is a 3-subset of an n-set X then, for n>=11, a(n-11) is the number of 11-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.

Crossrefs

Partial sums of A053367.
Cf. A093560 ((3, 1) Pascal, column m=9).

Programs

  • Magma
    [(n+3)*Binomial(n+8, 8)/3: n in [0..30]]; // G. C. Greubel, May 24 2018
  • Mathematica
    CoefficientList[Series[(1+2*x)/(1-x)^10, {x, 0, 50}], x] (* G. C. Greubel, May 24 2018 *)
    Table[(n+3) Binomial[n+8,8]/3,{n,0,30}] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,12,75,330,1155,3432,9009,21450,47190,97240},30] (* Harvey P. Dale, Feb 25 2021 *)
  • PARI
    for(n=0, 30, print1((n+3)*binomial(n+8, 8)/3, ", ")) \\ G. C. Greubel, May 24 2018
    

Formula

G.f.: (1+2*x)/(1-x)^10.
a(n) = binomial(n+8,n+2)*binomial(n+3,n)/28. - Zerinvary Lajos, May 12 2006