A053310 a(n) = (n+3)*binomial(n+8, 8)/3.
1, 12, 75, 330, 1155, 3432, 9009, 21450, 47190, 97240, 189618, 352716, 629850, 1085280, 1812030, 2941884, 4657983, 7210500, 10935925, 16280550, 23828805, 34337160, 48774375, 68368950, 94664700, 129585456, 175509972, 235358200
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
Crossrefs
Programs
-
Magma
[(n+3)*Binomial(n+8, 8)/3: n in [0..30]]; // G. C. Greubel, May 24 2018
-
Mathematica
CoefficientList[Series[(1+2*x)/(1-x)^10, {x, 0, 50}], x] (* G. C. Greubel, May 24 2018 *) Table[(n+3) Binomial[n+8,8]/3,{n,0,30}] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,12,75,330,1155,3432,9009,21450,47190,97240},30] (* Harvey P. Dale, Feb 25 2021 *)
-
PARI
for(n=0, 30, print1((n+3)*binomial(n+8, 8)/3, ", ")) \\ G. C. Greubel, May 24 2018
Formula
G.f.: (1+2*x)/(1-x)^10.
a(n) = binomial(n+8,n+2)*binomial(n+3,n)/28. - Zerinvary Lajos, May 12 2006
Comments