cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A230061 Primes of the form Catalan(n)+1.

Original entry on oeis.org

2, 3, 43, 58787, 4861946401453, 337485502510215975556783793455058624701, 4180080073556524734514695828170907458428751314321, 1000134600800354781929399250536541864362461089950801, 944973797977428207852605870454939596837230758234904051
Offset: 1

Views

Author

K. D. Bajpai, Oct 08 2013

Keywords

Comments

The 25th term a(25) in the sequence has 693 digits.
a(26) has 1335 digits; a(27) has 1647 digits; a(28) has 1694 digits; a(29) has 2554 digits; a(30) has 4857 digits; a(31) has 4876 digits; a(32) has 9641 digits. - Charles R Greathouse IV, Oct 09 2013

Examples

			a(3)= 43: Catalan(5)= (2*5)!/(5!*(5+1)!)= 42. Catalan(5)+1= 43 which is prime.
a(4)= 58787: Catalan(11)= (2*11)!/(11!*(11+1)!)= 58786. Catalan(11)+1= 58787 which is prime.
		

Crossrefs

Cf. A053429 (numbers n such that Catalan(n)+1 is prime).

Programs

  • Maple
    KD:= proc() local a,b,c; a:= (2*n)!/(n!*(n + 1)!); b:=a+1;if isprime(b) then return(b): fi; end: seq(KD(),n=1..50);
  • Mathematica
    Select[CatalanNumber[Range[100]]+1,PrimeQ] (* Harvey P. Dale, Aug 26 2021 *)
  • PARI
    for(n=1,1e3,if(ispseudoprime(t=binomial(2*n,n)/(n+1)+1),print1(t", "))) \\ Charles R Greathouse IV, Oct 08 2013

A231885 Primes of the form Catalan(n) - 1.

Original entry on oeis.org

13, 41, 131, 1429, 4861, 477638699, 4861946401451, 5632681584560312734993915705849145099, 16435314834665426797069144960762886143367590394939, 171069509209912116706646841207804116182333282333996796075729541331934805254423
Offset: 1

Views

Author

K. D. Bajpai, Nov 21 2013

Keywords

Comments

The 22nd term a(22) in the sequence has 862 digits.
a(23) has 1134 digits; a(25) has 1413 digits; a(30) has 2046 digits; a(31) has 2348 digits (these are not included in b-file).

Examples

			a(2)= 41: n= 5: (2*n)!/(n!*(n + 1)!)-1= 41 which is prime.
a(4)= 1429: n= 8: (2*n)!/(n!*(n + 1)!)-1= 1429 which is prime.
		

Crossrefs

Cf. A000108 (Catalan numbers).
Cf. A053427 (numbers n : Catalan(n)-1 is prime).
Cf. A053429 (numbers n such that Catalan(n)+1 is prime).
Cf. A230061 (primes of the form Catalan(n)+1).

Programs

  • Maple
    KD:= proc() local a; a:= (2*n)!/(n!*(n + 1)!)-1;  if isprime(a) then return(a):  fi;  end:  seq(KD(), n=1..150);
  • Mathematica
    Select[CatalanNumber[Range[200]]-1,PrimeQ] (* Harvey P. Dale, Dec 21 2019 *)

A053427 Numbers n such that Catalan(n)-1 is prime.

Original entry on oeis.org

4, 5, 6, 8, 9, 18, 25, 66, 87, 134, 145, 200, 384, 443, 502, 589, 625, 638, 1082, 1235, 1236, 1439, 1892, 2014, 2355, 2380, 2592, 2676, 2981, 3406, 3908, 4775, 5885, 10617, 16108, 17035, 18164, 18307, 20565, 24542, 26388, 32786, 47379, 49711, 50103, 55067
Offset: 1

Views

Author

David Broadhurst, Jan 10 2000

Keywords

Comments

Primality up to Catalan(5885)-1 proved by PrimeForm.
The next term, if it exists, is > 60000. - Vaclav Kotesovec, Apr 26 2021

Examples

			Catalan(25)-1 = 50!/25!/26!-1 = 4861946401451 is prime.
		

Crossrefs

Programs

Extensions

a(34)-a(41) from Charles R Greathouse IV, Jan 03 2014
a(42) from Vaclav Kotesovec, Apr 20 2021
a(43)-a(46) from Vaclav Kotesovec, Apr 25 2021

A235051 a(n) = |{0 < k < n-2: C(sigma(k) + phi(n-k)/2) - 1 is prime}|, where C(j) is the j-th Catalan number (A000108), sigma(k) is the sum of all positive divisors of k, and phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 3, 4, 3, 5, 3, 4, 4, 4, 5, 3, 4, 4, 5, 3, 2, 1, 4, 2, 2, 2, 4, 2, 2, 2, 2, 4, 5, 1, 1, 1, 3, 1, 2, 2, 5, 1, 1, 3, 1, 2, 1, 2, 1, 4, 3, 3, 3, 1, 0, 0, 2, 2, 2, 1, 7, 1, 0, 4, 1, 3, 1, 1, 2, 2, 1, 7, 4, 4, 1, 3, 3, 2, 3, 4, 3, 1, 7, 1, 5, 2, 5, 1, 3, 3, 4, 5, 1, 4, 2, 3, 4, 6, 5, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 02 2014

Keywords

Comments

It might seem that a(n) > 0 for all n > 63, but 9122 and 9438 are counterexamples.

Examples

			a(22) = 1 since sigma(8) + phi(14)/2 = 15 + 6/2 = 18 with C(18) - 1 = 477638699 prime.
		

Crossrefs

Programs

  • Mathematica
    sigma[n_]:=DivisorSigma[1,n]
    f[n_,k_]:=CatalanNumber[sigma[k]+EulerPhi[n-k]/2]-1
    a[n_]:=Sum[If[PrimeQ[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]
  • PARI
    C(n)=binomial(2*n, n)/(n+1)
    a(n)=sum(k=1,n-3,ispseudoprime(C(sigma(k)+eulerphi(n-k)/2)-1)) \\ Charles R Greathouse IV, Jan 03 2014
Showing 1-4 of 4 results.