cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053442 Moments of generalized Motzkin paths.

Original entry on oeis.org

1, 0, 2, 1, 6, 6, 21, 30, 82, 141, 342, 650, 1485, 2982, 6612, 13693, 29922, 63072, 136905, 291618, 631302, 1353441, 2928054, 6303798, 13642117, 29454702, 63791456, 138020533, 299191968, 648376932, 1406836717, 3052671816, 6629649798, 14400972413, 31301837952
Offset: 0

Views

Author

N. J. A. Sloane, Jan 12 2000

Keywords

Comments

From Seiichi Manyama, Apr 30 2025: (Start)
Number of lattice paths from (0,0) to (n,n) using steps (2,0),(0,2),(3,3).
Diagonal of the rational function 1 / (1 - x^2 - y^2 - x^3*y^3).
Diagonal of the rational function 1 / ((1-x^2*y)*(1-x*y^2) - y). (End)

Crossrefs

Cf. A002426.

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[1 - 4 x^2 - 2 x^3 + x^6], {x, 0, 34}], x], (* Michael De Vlieger, Dec 25 2021 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x^2-2*x^3+x^6)) \\ Seiichi Manyama, Apr 30 2025

Formula

G.f.: 1 / sqrt(1-4*z^2-2*z^3+z^6). - Sean A. Irvine, Dec 25 2021

Extensions

More terms from Reiner Martin, Oct 13 2002
Typos in terms corrected by Sean A. Irvine, Dec 25 2021
Offset changed to 0 by Seiichi Manyama, Apr 30 2025