cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A376791 Expansion of 1/sqrt((1 - x^3)^2 - 4*x).

Original entry on oeis.org

1, 2, 6, 21, 76, 282, 1065, 4074, 15732, 61193, 239406, 941064, 3713701, 14703896, 58383138, 232383841, 926943678, 3704410890, 14828984641, 59450138412, 238659074286, 959247218253, 3859777477944, 15546444564846, 62675854384977, 252893414725842, 1021208266423260
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Comments

From Seiichi Manyama, Apr 30 2025: (Start)
Number of lattice paths from (0,0) to (n,n) using steps (1,0),(0,1),(3,3).
Diagonal of the rational function 1 / (1 - x - y - x^3*y^3). (End)

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-x^3)^2-4*x))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-5*k, k)*binomial(2*n-6*k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k,k) * binomial(2*n-6*k,n-3*k).

A383571 Expansion of 1/sqrt((1-x^3)^2 - 4*x^4).

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 1, 6, 6, 1, 12, 30, 21, 20, 90, 141, 100, 210, 561, 672, 672, 1681, 3206, 3528, 5125, 11622, 17892, 21253, 38172, 74052, 102565, 141680, 268092, 454741, 622182, 979836, 1790361, 2784366, 3993132, 6741593, 11587758, 17380116, 26551097, 45489082, 74098518
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (4,0),(0,4),(3,3).
Diagonal of the rational function 1 / (1 - x^4 - y^4 - x^3*y^3).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k, k)*binomial(k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(k,n-3*k).

A383568 Expansion of 1/sqrt((1-x^5)^2 - 4*x^2).

Original entry on oeis.org

1, 0, 2, 0, 6, 1, 20, 6, 70, 30, 253, 140, 936, 630, 3522, 2773, 13430, 12032, 51770, 51690, 201389, 220470, 789546, 935330, 3116416, 3951949, 12373910, 16645398, 49389050, 69938416, 198048409, 293296470, 797461358, 1228136090, 3222960100, 5136602753
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (2,0),(0,2),(5,5).
Diagonal of the rational function 1 / (1 - x^2 - y^2 - x^5*y^5).
Diagonal of the rational function 1 / ((1-x^2*y)*(1-x^3*y^4) - y).

Crossrefs

Main diagonal of A383567.

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt((1-x^5)^2-4*x^2))

A383550 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (2,0),(0,2),(3,3).

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 3, 1, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 2, 6, 2, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 5, 3, 10, 6, 10, 3, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 4, 15, 12, 21, 12, 15, 4, 6, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Examples

			Square array A(n,k) begins:
  1, 0, 1, 0,  1,  0,  1,  0,  1, ...
  0, 0, 0, 0,  0,  0,  0,  0,  0, ...
  1, 0, 2, 0,  3,  0,  4,  0,  5, ...
  0, 0, 0, 1,  0,  2,  0,  3,  0, ...
  1, 0, 3, 0,  6,  0, 10,  0, 15, ...
  0, 0, 0, 2,  0,  6,  0, 12,  0, ...
  1, 0, 4, 0, 10,  0, 21,  0, 38, ...
  0, 0, 0, 3,  0, 12,  0, 30,  0, ...
  1, 0, 5, 0, 15,  0, 38,  0, 82, ...
		

Crossrefs

Main diagonal gives A053442.

Programs

  • PARI
    a(n, k) = my(x='x+O('x^(n+1)), y='y+O('y^(k+1))); polcoef(polcoef(1/(1-x^2-y^2-x^3*y^3), n), k);

Formula

A(n,k) = A(k,n).
If n - k == 1 (mod 2), A(n,k) = 0.
A(n,k) = A(n-2,k) + A(n,k-2) + A(n-3,k-3).
G.f.: 1 / (1 - x^2 - y^2 - x^3*y^3).

A383569 Expansion of 1/sqrt((1-x^7)^2 - 4*x^2).

Original entry on oeis.org

1, 0, 2, 0, 6, 0, 20, 1, 70, 6, 252, 30, 924, 140, 3433, 630, 12882, 2772, 48710, 12012, 185316, 51481, 708582, 218810, 2720788, 923990, 10484684, 3881556, 40528441, 16236486, 157086660, 67675972, 610318610, 281236620, 2376289056, 1165715161, 9269869182
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (2,0),(0,2),(7,7).
Diagonal of the rational function 1 / (1 - x^2 - y^2 - x^7*y^7).
Diagonal of the rational function 1 / ((1-x^2*y)*(1-x^5*y^6) - y).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-x^7)^2-4x^2],{x,0,40}],x] (* Harvey P. Dale, Aug 09 2025 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/sqrt((1-x^7)^2-4*x^2))
Showing 1-5 of 5 results.