cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A351736 Expansion of e.g.f. exp( x * (exp(2 * x) - 1) ).

Original entry on oeis.org

1, 0, 4, 12, 80, 560, 4512, 40768, 407808, 4453632, 52605440, 667234304, 9032423424, 129822564352, 1972450443264, 31559866736640, 530043925495808, 9317136303718400, 170976603113127936, 3268020569256755200, 64928967058257346560, 1338431135849666052096
Offset: 0

Views

Author

Seiichi Manyama, May 20 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(exp(2*x)-1))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, 2^(n-k)*stirling(n-k, k, 2)/(n-k)!);
    
  • PARI
    a(n) = sum(k=0, n, (2*k-1)^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Aug 29 2022
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(2*k-1)*x)^(k+1))) \\ Seiichi Manyama, Aug 29 2022

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} 2^(n-k) * Stirling2(n-k,k)/(n-k)!.
From Seiichi Manyama, Aug 29 2022: (Start)
a(n) = Sum_{k=0..n} (2*k-1)^(n-k) * binomial(n,k).
G.f.: Sum_{k>=0} x^k / (1 - (2*k-1)*x)^(k+1). (End)

A354309 Expansion of e.g.f. 1/(1 - 2*x)^(x/2).

Original entry on oeis.org

1, 0, 2, 6, 44, 360, 3744, 46200, 662864, 10838016, 198943200, 4050937440, 90613710912, 2208677328000, 58265734055424, 1653914478303360, 50263564166365440, 1628300694034022400, 56012708047907510784, 2039053421375533094400, 78314004507947110456320
Offset: 0

Views

Author

Seiichi Manyama, May 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[1/(1-2x)^(x/2),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jan 10 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-2*x)^(x/2)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=2, i, j*2^(j-2)/(j-1)*v[i-j+1]/(i-j)!)); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\2, 2^(n-2*k)*abs(stirling(n-k, k, 1))/(n-k)!);

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=2..n} k * 2^(k-2)/(k-1) * a(n-k)/(n-k)!.
a(n) = n! * Sum_{k=0..floor(n/2)} 2^(n-2*k) * |Stirling1(n-k,k)|/(n-k)!.
a(n) ~ sqrt(Pi) * 2^(n + 1/2) * n^(n - 1/4) / (Gamma(1/4) * exp(n)). - Vaclav Kotesovec, Mar 14 2024

A351735 Expansion of e.g.f. 1/(1 - 3 * x)^x.

Original entry on oeis.org

1, 0, 6, 27, 324, 4050, 64962, 1224720, 26776656, 665390376, 18529576200, 571602980520, 19349098690248, 713092338026640, 28422424039182768, 1218246132898693080, 55876497505161154560, 2730710993688989519040, 141654212475516155694528
Offset: 0

Views

Author

Seiichi Manyama, May 20 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-3*x)^x))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, 3^(n-k)*abs(stirling(n-k, k, 1))/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} 3^(n-k) * |Stirling1(n-k,k)|/(n-k)!.
a(n) ~ sqrt(2*Pi) * 3^n * n^(n - 1/6) / (Gamma(1/3) * exp(n)). - Vaclav Kotesovec, Aug 30 2025

A362837 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = (-1)^n * n! * Sum_{j=0..floor(n/2)} k^(n-j) * Stirling1(n-j,j)/(n-j)!.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 3, 0, 1, 0, 6, 12, 20, 0, 1, 0, 8, 27, 112, 90, 0, 1, 0, 10, 48, 324, 960, 594, 0, 1, 0, 12, 75, 704, 4050, 10848, 4200, 0, 1, 0, 14, 108, 1300, 11520, 64962, 141120, 34544, 0, 1, 0, 16, 147, 2160, 26250, 239616, 1224720, 2122496, 316008, 0
Offset: 0

Views

Author

Seiichi Manyama, May 05 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,     1,     1, ...
  0,  0,   0,    0,     0,     0, ...
  0,  2,   4,    6,     8,    10, ...
  0,  3,  12,   27,    48,    75, ...
  0, 20, 112,  324,   704,  1300, ...
  0, 90, 960, 4050, 11520, 26250, ...
		

Crossrefs

Columns k=0..3 give: A000007, A066166, A053491, A351735.
Main diagonal gives A362838.
Cf. A362834.

Programs

  • PARI
    T(n, k) = (-1)^n*n!*sum(j=0, n\2, k^(n-j)*stirling(n-j, j, 1)/(n-j)!);

Formula

E.g.f. of column k: 1/(1 - k * x)^x.
Showing 1-4 of 4 results.