A052506
Expansion of e.g.f. exp(x*exp(x)-x).
Original entry on oeis.org
1, 0, 2, 3, 16, 65, 336, 1897, 11824, 80145, 586000, 4588001, 38239224, 337611001, 3144297352, 30779387745, 315689119456, 3383159052833, 37790736663456, 439036039824193, 5294386116882280, 66155074120062921, 855156188538926296, 11418964004032623809
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x*Exp(x)-x) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 13 2019
-
spec := [S,{S=Set(Tree), Tree=Prod(Z,Set(Z,0 < card))},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
-
nn=20;Range[0,nn]! CoefficientList[Series[Exp[x(Exp[x]-1)], {x,0,nn}], x] (* Geoffrey Critzer, Sep 20 2012 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x*exp(x)-x) )) \\ G. C. Greubel, Nov 15 2017
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k-1)*x)^(k+1))) \\ Seiichi Manyama, Aug 29 2022
-
m = 30; T = taylor(exp(x*exp(x)-x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019
A351737
Expansion of e.g.f. exp( x * (exp(3 * x) - 1) ).
Original entry on oeis.org
1, 0, 6, 27, 216, 2025, 21708, 260253, 3460320, 50395041, 795324420, 13495904829, 244747554912, 4718754452529, 96285948702804, 2071265238290565, 46815054101658432, 1108489016781839169, 27424412680091114628, 707277138662880504045, 18974871706141125008640
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(exp(3*x)-1))))
-
a(n) = n!*sum(k=0, n\2, 3^(n-k)*stirling(n-k, k, 2)/(n-k)!);
-
a(n) = sum(k=0, n, (3*k-1)^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Aug 29 2022
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(3*k-1)*x)^(k+1))) \\ Seiichi Manyama, Aug 29 2022
A356806
a(n) = Sum_{k=0..n} (k*n-1)^(n-k) * binomial(n,k).
Original entry on oeis.org
1, 0, 4, 27, 448, 10625, 344736, 14437213, 753991680, 47974773393, 3650824000000, 326917384798301, 33956137832546304, 4041303651931462969, 545552768347831566336, 82828479894303251953125, 14040577418634835164921856, 2640293357854435329683551265
Offset: 0
-
a(n) = sum(k=0, n, (k*n-1)^(n-k)*binomial(n, k));
-
a(n) = n!*sum(k=0, n\2, n^(n-k)*stirling(n-k, k, 2)/(n-k)!);
A356812
Expansion of e.g.f. exp(x * (1 - exp(2*x))).
Original entry on oeis.org
1, 0, -4, -12, 16, 400, 2208, -448, -131840, -1357056, -4820480, 71120896, 1537308672, 14006460416, 3075702784, -2224350781440, -41354996154368, -359660395495424, 1675436608585728, 121894823709900800, 2317859245604208640, 20543311167964053504
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[x(1-Exp[2x])],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Oct 04 2023 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-exp(2*x)))))
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (-x)^k/(1-(2*k+1)*x)^(k+1)))
-
a(n) = sum(k=0, n, (-1)^k*(2*k+1)^(n-k)*binomial(n, k));
-
a(n) = n!*sum(k=0, n\2, (-1)^k*2^(n-k)*stirling(n-k, k, 2)/(n-k)!);
A356815
Expansion of e.g.f. exp(-x * (exp(2*x) + 1)).
Original entry on oeis.org
1, -2, 0, 4, 32, 48, -608, -6400, -24064, 163072, 3567104, 28394496, 6535168, -3250745344, -50725740544, -344530853888, 2476610551808, 110057610608640, 1655672654135296, 9616664975114240, -195178079811272704, -6998474114188967936, -110894925369151848448
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x*(exp(2*x)+1))))
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (-x)^k/(1-(2*k-1)*x)^(k+1)))
-
a(n) = sum(k=0, n, (-1)^k*(2*k-1)^(n-k)*binomial(n, k));
A351733
Expansion of e.g.f. exp( 2 * x * (exp(x) - 1) ).
Original entry on oeis.org
1, 0, 4, 6, 56, 250, 1812, 12614, 101040, 864882, 7988780, 78726142, 823897032, 9111774698, 106068603396, 1295153135670, 16538681229152, 220281968528098, 3053087839536732, 43941561067048430, 655501502129291640, 10118103843683127642
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(2*x*(exp(x)-1))))
-
a(n) = n!*sum(k=0, n\2, 2^k*stirling(n-k, k, 2)/(n-k)!);
A354311
Expansion of e.g.f. exp( x/2 * (exp(2 * x) - 1) ).
Original entry on oeis.org
1, 0, 2, 6, 28, 160, 1056, 7784, 63568, 569664, 5542240, 58038112, 650045760, 7746901760, 97790608384, 1302349549440, 18235836899584, 267663541270528, 4107395264113152, 65739857693144576, 1095095457262013440, 18949711553467957248, 340036076121127395328
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x/2*(exp(2*x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*2^(j-2)*binomial(i-1, j-1)*v[i-j+1])); v;
-
a(n) = n!*sum(k=0, n\2, 2^(n-2*k)*stirling(n-k, k, 2)/(n-k)!);
A367885
Expansion of e.g.f. 1/(1 - x * (exp(2*x) - 1)).
Original entry on oeis.org
1, 0, 4, 12, 128, 1040, 12672, 161728, 2481152, 41806080, 791613440, 16399944704, 371591995392, 9110211874816, 240670782291968, 6810264853463040, 205583847590985728, 6593508525460226048, 223913466256013918208, 8026367531323488993280
Offset: 0
-
a(n) = n!*sum(k=0, n\2, 2^(n-k)*k!*stirling(n-k, k, 2)/(n-k)!);
A362839
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} k^(n-j) * Stirling2(n-j,j)/(n-j)!.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 3, 0, 1, 0, 6, 12, 16, 0, 1, 0, 8, 27, 80, 65, 0, 1, 0, 10, 48, 216, 560, 336, 0, 1, 0, 12, 75, 448, 2025, 4512, 1897, 0, 1, 0, 14, 108, 800, 5120, 21708, 40768, 11824, 0, 1, 0, 16, 147, 1296, 10625, 67584, 260253, 407808, 80145, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
0, 2, 4, 6, 8, 10, ...
0, 3, 12, 27, 48, 75, ...
0, 16, 80, 216, 448, 800, ...
0, 65, 560, 2025, 5120, 10625, ...
-
T(n, k) = n!*sum(j=0, n\2, k^(n-j)*stirling(n-j, j, 2)/(n-j)!);
Showing 1-9 of 9 results.
Comments