A052506
Expansion of e.g.f. exp(x*exp(x)-x).
Original entry on oeis.org
1, 0, 2, 3, 16, 65, 336, 1897, 11824, 80145, 586000, 4588001, 38239224, 337611001, 3144297352, 30779387745, 315689119456, 3383159052833, 37790736663456, 439036039824193, 5294386116882280, 66155074120062921, 855156188538926296, 11418964004032623809
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x*Exp(x)-x) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 13 2019
-
spec := [S,{S=Set(Tree), Tree=Prod(Z,Set(Z,0 < card))},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
-
nn=20;Range[0,nn]! CoefficientList[Series[Exp[x(Exp[x]-1)], {x,0,nn}], x] (* Geoffrey Critzer, Sep 20 2012 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x*exp(x)-x) )) \\ G. C. Greubel, Nov 15 2017
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k-1)*x)^(k+1))) \\ Seiichi Manyama, Aug 29 2022
-
m = 30; T = taylor(exp(x*exp(x)-x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019
A351736
Expansion of e.g.f. exp( x * (exp(2 * x) - 1) ).
Original entry on oeis.org
1, 0, 4, 12, 80, 560, 4512, 40768, 407808, 4453632, 52605440, 667234304, 9032423424, 129822564352, 1972450443264, 31559866736640, 530043925495808, 9317136303718400, 170976603113127936, 3268020569256755200, 64928967058257346560, 1338431135849666052096
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(exp(2*x)-1))))
-
a(n) = n!*sum(k=0, n\2, 2^(n-k)*stirling(n-k, k, 2)/(n-k)!);
-
a(n) = sum(k=0, n, (2*k-1)^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Aug 29 2022
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(2*k-1)*x)^(k+1))) \\ Seiichi Manyama, Aug 29 2022
A356806
a(n) = Sum_{k=0..n} (k*n-1)^(n-k) * binomial(n,k).
Original entry on oeis.org
1, 0, 4, 27, 448, 10625, 344736, 14437213, 753991680, 47974773393, 3650824000000, 326917384798301, 33956137832546304, 4041303651931462969, 545552768347831566336, 82828479894303251953125, 14040577418634835164921856, 2640293357854435329683551265
Offset: 0
-
a(n) = sum(k=0, n, (k*n-1)^(n-k)*binomial(n, k));
-
a(n) = n!*sum(k=0, n\2, n^(n-k)*stirling(n-k, k, 2)/(n-k)!);
A356813
Expansion of e.g.f. exp(x * (1 - exp(3*x))).
Original entry on oeis.org
1, 0, -6, -27, 0, 1215, 12312, 45927, -657072, -15857937, -167699160, -266960529, 29356170984, 700068823623, 8419188469104, -1491045413265, -2856006296224992, -79065447339366945, -1162293393139510824, -744123842820101745, 538503788896323210360
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-exp(3*x)))))
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (-x)^k/(1-(3*k+1)*x)^(k+1)))
-
a(n) = sum(k=0, n, (-1)^k*(3*k+1)^(n-k)*binomial(n, k));
-
a(n) = n!*sum(k=0, n\2, (-1)^k*3^(n-k)*stirling(n-k, k, 2)/(n-k)!);
A356816
Expansion of e.g.f. exp(-x * (exp(3*x) + 1)).
Original entry on oeis.org
1, -2, -2, 1, 88, 583, 676, -35597, -519392, -3359393, 19013884, 896435395, 13640180896, 85591357135, -1527872118356, -61100053650053, -1076294742932288, -7610985095240513, 200631806070276988, 9284475508083767059, 200226297062313730816, 1940767272243466116463
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x*(exp(3*x)+1))))
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (-x)^k/(1-(3*k-1)*x)^(k+1)))
-
a(n) = sum(k=0, n, (-1)^k*(3*k-1)^(n-k)*binomial(n, k));
A351734
Expansion of e.g.f. exp( 3 * x * (exp(x) - 1) ).
Original entry on oeis.org
1, 0, 6, 9, 120, 555, 5148, 39711, 378528, 3715011, 39838260, 452684463, 5463506304, 69553644771, 930940368036, 13054086036855, 191222363275968, 2918620069099395, 46309955947643124, 762335523354333855, 12995722456718984160, 229045407317491457763
Offset: 0
-
With[{nn=30},CoefficientList[Series[Exp[3x (Exp[x]-1)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 02 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(3*x*(exp(x)-1))))
-
a(n) = n!*sum(k=0, n\2, 3^k*stirling(n-k, k, 2)/(n-k)!);
A354312
Expansion of e.g.f. exp( x/3 * (exp(3 * x) - 1) ).
Original entry on oeis.org
1, 0, 2, 9, 48, 315, 2496, 22491, 223728, 2437371, 28931040, 371291283, 5111412120, 75014135235, 1168157451384, 19228202401635, 333378840718944, 6069073767712587, 115683487658404272, 2303091818149762899, 47784447190060311240, 1031179733234906055507
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x/3*(exp(3*x)-1))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*3^(j-2)*binomial(i-1, j-1)*v[i-j+1])); v;
-
a(n) = n!*sum(k=0, n\2, 3^(n-2*k)*stirling(n-k, k, 2)/(n-k)!);
A356827
Expansion of e.g.f. exp(x * exp(3*x)).
Original entry on oeis.org
1, 1, 7, 46, 361, 3436, 37729, 463366, 6280369, 93015352, 1491337441, 25684077706, 472217487625, 9221588527204, 190441412508481, 4143470377262806, 94663498086222049, 2264440394856702832, 56570146384760433217, 1472545685988162638722
Offset: 0
-
A356827 := proc(n)
add((3*k)^(n-k) * binomial(n,k),k=0..n) ;
end proc:
seq(A356827(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(3*x))))
-
my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-3*k*x)^(k+1)))
-
a(n) = sum(k=0, n, (3*k)^(n-k)*binomial(n, k));
A367886
Expansion of e.g.f. 1/(1 - x * (exp(3*x) - 1)).
Original entry on oeis.org
1, 0, 6, 27, 324, 3645, 54918, 923643, 18061704, 394663833, 9607469130, 256997250279, 7502660832780, 237243300445125, 8079508278302958, 294800526215739315, 11473728720705019152, 474469344621574172721, 20774758472643152149650
Offset: 0
-
a(n) = n!*sum(k=0, n\2, 3^(n-k)*k!*stirling(n-k, k, 2)/(n-k)!);
A362839
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} k^(n-j) * Stirling2(n-j,j)/(n-j)!.
Original entry on oeis.org
1, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 3, 0, 1, 0, 6, 12, 16, 0, 1, 0, 8, 27, 80, 65, 0, 1, 0, 10, 48, 216, 560, 336, 0, 1, 0, 12, 75, 448, 2025, 4512, 1897, 0, 1, 0, 14, 108, 800, 5120, 21708, 40768, 11824, 0, 1, 0, 16, 147, 1296, 10625, 67584, 260253, 407808, 80145, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 0, 0, 0, 0, 0, ...
0, 2, 4, 6, 8, 10, ...
0, 3, 12, 27, 48, 75, ...
0, 16, 80, 216, 448, 800, ...
0, 65, 560, 2025, 5120, 10625, ...
-
T(n, k) = n!*sum(j=0, n\2, k^(n-j)*stirling(n-j, j, 2)/(n-j)!);
Showing 1-10 of 10 results.
Comments