cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A052506 Expansion of e.g.f. exp(x*exp(x)-x).

Original entry on oeis.org

1, 0, 2, 3, 16, 65, 336, 1897, 11824, 80145, 586000, 4588001, 38239224, 337611001, 3144297352, 30779387745, 315689119456, 3383159052833, 37790736663456, 439036039824193, 5294386116882280, 66155074120062921, 855156188538926296, 11418964004032623809
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

a(n) is the number of forests of rooted labeled trees with height exactly one. Equivalently, the number of idempotent mappings from {1,2,...,n} into {1,2,...,n} where each fixed point has at least one (other than itself) element mapped to it. See the second summation formula provided by Vladeta Jovovic with conditions on k, the number of fixed points. - Geoffrey Critzer, Sep 20 2012

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x*Exp(x)-x) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, May 13 2019
    
  • Maple
    spec := [S,{S=Set(Tree), Tree=Prod(Z,Set(Z,0 < card))},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    nn=20;Range[0,nn]! CoefficientList[Series[Exp[x(Exp[x]-1)], {x,0,nn}], x]  (* Geoffrey Critzer, Sep 20 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x*exp(x)-x) )) \\ G. C. Greubel, Nov 15 2017
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k-1)*x)^(k+1))) \\ Seiichi Manyama, Aug 29 2022
    
  • Sage
    m = 30; T = taylor(exp(x*exp(x)-x), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 13 2019

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*(n-k-1)^k. - Vladeta Jovovic, Apr 12 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*k!*Stirling2(n-k, k). - Vladeta Jovovic, Dec 19 2004
a(n) ~ exp((1-r*(n+r))/(1+r)) * n^(n+1/2) * sqrt(1+r) / (r^n * sqrt((1+r)^3 + n*(1+3*r+r^2))), where r satisfies exp(r)*(1+r) - (1+n)/r = 1. - Vaclav Kotesovec, Aug 04 2014
(a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n)/2))) / (2*LambertW(sqrt(n)/2)). - Vaclav Kotesovec, Aug 06 2014
G.f.: Sum_{k>=0} x^k / (1 - (k-1)*x)^(k+1). - Seiichi Manyama, Aug 29 2022

A351736 Expansion of e.g.f. exp( x * (exp(2 * x) - 1) ).

Original entry on oeis.org

1, 0, 4, 12, 80, 560, 4512, 40768, 407808, 4453632, 52605440, 667234304, 9032423424, 129822564352, 1972450443264, 31559866736640, 530043925495808, 9317136303718400, 170976603113127936, 3268020569256755200, 64928967058257346560, 1338431135849666052096
Offset: 0

Views

Author

Seiichi Manyama, May 20 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(exp(2*x)-1))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, 2^(n-k)*stirling(n-k, k, 2)/(n-k)!);
    
  • PARI
    a(n) = sum(k=0, n, (2*k-1)^(n-k)*binomial(n, k)); \\ Seiichi Manyama, Aug 29 2022
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(2*k-1)*x)^(k+1))) \\ Seiichi Manyama, Aug 29 2022

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} 2^(n-k) * Stirling2(n-k,k)/(n-k)!.
From Seiichi Manyama, Aug 29 2022: (Start)
a(n) = Sum_{k=0..n} (2*k-1)^(n-k) * binomial(n,k).
G.f.: Sum_{k>=0} x^k / (1 - (2*k-1)*x)^(k+1). (End)

A356806 a(n) = Sum_{k=0..n} (k*n-1)^(n-k) * binomial(n,k).

Original entry on oeis.org

1, 0, 4, 27, 448, 10625, 344736, 14437213, 753991680, 47974773393, 3650824000000, 326917384798301, 33956137832546304, 4041303651931462969, 545552768347831566336, 82828479894303251953125, 14040577418634835164921856, 2640293357854435329683551265
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (k*n-1)^(n-k)*binomial(n, k));
    
  • PARI
    a(n) = n!*sum(k=0, n\2, n^(n-k)*stirling(n-k, k, 2)/(n-k)!);

Formula

a(n) = n! * [x^n] exp( x * (exp(n * x) - 1) ).
a(n) = n! * Sum_{k=0..floor(n/2)} n^(n-k) * Stirling2(n-k,k)/(n-k)!.
a(n) = [x^n] Sum_{k>=0} x^k / (1 - (n*k-1)*x)^(k+1).

A356813 Expansion of e.g.f. exp(x * (1 - exp(3*x))).

Original entry on oeis.org

1, 0, -6, -27, 0, 1215, 12312, 45927, -657072, -15857937, -167699160, -266960529, 29356170984, 700068823623, 8419188469104, -1491045413265, -2856006296224992, -79065447339366945, -1162293393139510824, -744123842820101745, 538503788896323210360
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(1-exp(3*x)))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (-x)^k/(1-(3*k+1)*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (-1)^k*(3*k+1)^(n-k)*binomial(n, k));
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (-1)^k*3^(n-k)*stirling(n-k, k, 2)/(n-k)!);

Formula

G.f.: Sum_{k>=0} (-x)^k / (1 - (3*k+1)*x)^(k+1).
a(n) = Sum_{k=0..n} (-1)^k * (3*k+1)^(n-k) * binomial(n,k).
a(n) = n! * Sum_{k=0..floor(n/2)} (-1)^k * 3^(n-k) * Stirling2(n-k,k)/(n-k)!.

A356816 Expansion of e.g.f. exp(-x * (exp(3*x) + 1)).

Original entry on oeis.org

1, -2, -2, 1, 88, 583, 676, -35597, -519392, -3359393, 19013884, 896435395, 13640180896, 85591357135, -1527872118356, -61100053650053, -1076294742932288, -7610985095240513, 200631806070276988, 9284475508083767059, 200226297062313730816, 1940767272243466116463
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-x*(exp(3*x)+1))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (-x)^k/(1-(3*k-1)*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (-1)^k*(3*k-1)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} (-x)^k / (1 - (3*k-1)*x)^(k+1).
a(n) = Sum_{k=0..n} (-1)^k * (3*k-1)^(n-k) * binomial(n,k).

A351734 Expansion of e.g.f. exp( 3 * x * (exp(x) - 1) ).

Original entry on oeis.org

1, 0, 6, 9, 120, 555, 5148, 39711, 378528, 3715011, 39838260, 452684463, 5463506304, 69553644771, 930940368036, 13054086036855, 191222363275968, 2918620069099395, 46309955947643124, 762335523354333855, 12995722456718984160, 229045407317491457763
Offset: 0

Views

Author

Seiichi Manyama, May 20 2022

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[3x (Exp[x]-1)],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 02 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(3*x*(exp(x)-1))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, 3^k*stirling(n-k, k, 2)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} 3^k * Stirling2(n-k,k)/(n-k)!.

A354312 Expansion of e.g.f. exp( x/3 * (exp(3 * x) - 1) ).

Original entry on oeis.org

1, 0, 2, 9, 48, 315, 2496, 22491, 223728, 2437371, 28931040, 371291283, 5111412120, 75014135235, 1168157451384, 19228202401635, 333378840718944, 6069073767712587, 115683487658404272, 2303091818149762899, 47784447190060311240, 1031179733234906055507
Offset: 0

Views

Author

Seiichi Manyama, May 23 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x/3*(exp(3*x)-1))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=2, i, j*3^(j-2)*binomial(i-1, j-1)*v[i-j+1])); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\2, 3^(n-2*k)*stirling(n-k, k, 2)/(n-k)!);

Formula

a(0) = 1; a(n) = Sum_{k=2..n} k * 3^(k-2) * binomial(n-1,k-1) * a(n-k).
a(n) = n! * Sum_{k=0..floor(n/2)} 3^(n-2*k) * Stirling2(n-k,k)/(n-k)!.

A356827 Expansion of e.g.f. exp(x * exp(3*x)).

Original entry on oeis.org

1, 1, 7, 46, 361, 3436, 37729, 463366, 6280369, 93015352, 1491337441, 25684077706, 472217487625, 9221588527204, 190441412508481, 4143470377262806, 94663498086222049, 2264440394856702832, 56570146384760433217, 1472545685988162638722
Offset: 0

Views

Author

Seiichi Manyama, Aug 29 2022

Keywords

Crossrefs

Programs

  • Maple
    A356827 := proc(n)
        add((3*k)^(n-k) * binomial(n,k),k=0..n) ;
    end proc:
    seq(A356827(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x*exp(3*x))))
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-3*k*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n, (3*k)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k / (1 - 3*k*x)^(k+1).
a(n) = Sum_{k=0..n} (3*k)^(n-k) * binomial(n,k).

A367886 Expansion of e.g.f. 1/(1 - x * (exp(3*x) - 1)).

Original entry on oeis.org

1, 0, 6, 27, 324, 3645, 54918, 923643, 18061704, 394663833, 9607469130, 256997250279, 7502660832780, 237243300445125, 8079508278302958, 294800526215739315, 11473728720705019152, 474469344621574172721, 20774758472643152149650
Offset: 0

Views

Author

Seiichi Manyama, Dec 04 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, 3^(n-k)*k!*stirling(n-k, k, 2)/(n-k)!);

Formula

a(0) = 1; a(n) = n * Sum_{k=2..n} 3^(k-1) * binomial(n-1,k-1) * a(n-k).
a(n) = n! * Sum_{k=0..floor(n/2)} 3^(n-k) * k! * Stirling2(n-k,k)/(n-k)!.

A362839 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * Sum_{j=0..floor(n/2)} k^(n-j) * Stirling2(n-j,j)/(n-j)!.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 4, 3, 0, 1, 0, 6, 12, 16, 0, 1, 0, 8, 27, 80, 65, 0, 1, 0, 10, 48, 216, 560, 336, 0, 1, 0, 12, 75, 448, 2025, 4512, 1897, 0, 1, 0, 14, 108, 800, 5120, 21708, 40768, 11824, 0, 1, 0, 16, 147, 1296, 10625, 67584, 260253, 407808, 80145, 0
Offset: 0

Views

Author

Seiichi Manyama, May 05 2023

Keywords

Examples

			Square array begins:
  1,  1,   1,    1,    1,     1, ...
  0,  0,   0,    0,    0,     0, ...
  0,  2,   4,    6,    8,    10, ...
  0,  3,  12,   27,   48,    75, ...
  0, 16,  80,  216,  448,   800, ...
  0, 65, 560, 2025, 5120, 10625, ...
		

Crossrefs

Columns k=0..3 give: A000007, A052506, A351736, A351737.
Main diagonal gives A356806.
Cf. A362652.

Programs

  • PARI
    T(n, k) = n!*sum(j=0, n\2, k^(n-j)*stirling(n-j, j, 2)/(n-j)!);

Formula

E.g.f. of column k: exp(x * (exp(k * x) - 1)).
G.f. of column k: Sum_{j>=0} x^j / (1 - (k*j-1)*x)^(j+1).
T(n,k) = Sum_{j=0..n} (k*j-1)^(n-j) * binomial(n,j).
Showing 1-10 of 10 results.