A053492 REVEGF transform of [1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, ...].
1, 2, 15, 184, 3155, 69516, 1871583, 59542064, 2185497819, 90909876100, 4226300379983, 217152013181544, 12219893000227107, 747440554689309404, 49374719534173925055, 3503183373320829575008, 265693897270211120103563, 21451116469521758657525748
Offset: 1
Keywords
Examples
E.g.f.: A(x) = x + 2*x^2/2! + 15*x^3/3! + 184*x^4/4! + 3155*x^5/5! + ... Related expansions from _Paul D. Hanna_, Jul 07 2012: (Start) A(x) = x + (exp(x)-1)*x + d/dx (exp(x)-1)^2*x^2/2! + d^2/dx^2 (exp(x)-1)^3*x^3/3! + d^3/dx^3 (exp(x)-1)^4*x^4/4! + ... log(A(x)/x) = (exp(x)-1) + d/dx (exp(x)-1)^2*x/2! + d^2/dx^2 (exp(x)-1)^3*x^2/3! + d^3/dx^3 (exp(x)-1)^4*x^3/4! + ... (End) The a(3) = 15 pointed trees are 1[1 2[2 3]], 1[1 3[2 3]], 1[1[1 3] 2], 1[1[1 2] 3], 1[1 2 3], 2[1 2[2 3]], 2[1[1 3] 2], 2[2 3[1 3]], 2[2[1 2] 3], 2[1 2 3], 3[1 3[2 3]], 3[2 3[1 3]], 3[1[1 2] 3], 3[2[1 2] 3], 3[1 2 3].
Links
- G. C. Greubel, Table of n, a(n) for n = 1..355
- W. Y. Chen, A general bijective algorithm for trees, PNAS December 1, 1990 vol. 87 no. 24 9635-9639.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 854.
- Elena L. Wang and Guoce Xin, On Ward Numbers and Increasing Schröder Trees, arXiv:2507.15654 [math.CO], 2025. See p. 12.
Programs
-
Maple
A:= series(RootOf(exp(A053492:=%20n-%3E%20n!%20*%20coeff(A,%20x,%20n);%20%23%20_Brian%20Drake">Z)*_Z+x-2*_Z), x, 30): A053492:= n-> n! * coeff(A, x, n); # _Brian Drake, Apr 25 2006
-
Mathematica
Rest[CoefficientList[InverseSeries[Series[2*x-x*E^x, {x, 0, 20}], x],x] * Range[0, 20]!] (* Vaclav Kotesovec, Oct 27 2014 *)
-
Maxima
a(n):= if n=1 then 1 else sum(k!*stirling2(n-1,k)*binomial(n+k-1,n-1),k,1,n-1); /* Vladimir Kruchinin, May 10 2011 */
-
PARI
{a(n) = if( n<1, 0, n! * polcoeff( serreverse( 2*x - x * exp(x + x * O(x^n))), n))}; /* Michael Somos, Jun 06 2012 */
-
PARI
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, (exp(x+x*O(x^n))-1)^m*x^m/m!)); n!*polcoeff(A, n)} \\ Paul D. Hanna, Jul 07 2012 for(n=1, 25, print1(a(n), ", "))
-
PARI
{Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D} {a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, (exp(x+x*O(x^n))-1)^m*x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)} \\ Paul D. Hanna, Jul 07 2012 for(n=1, 25, print1(a(n), ", "))
-
PARI
\p100 \\ set precision {A=Vec(sum(n=0, 400, 1./(2 - n*x +O(x^25))^(n+1)) )} for(n=1, #A, print1(round(A[n]), ", ")) \\ Paul D. Hanna, Oct 27 2014
Formula
E.g.f. is the compositional inverse of 2*x - x*exp(x). - Brian Drake, Apr 25 2006
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x)-1)^n*x^n / n!. - Paul D. Hanna, Jul 07 2012
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x)-1)^n*x^(n-1) / n! ). - Paul D. Hanna, Jul 07 2012
a(n) = Sum_{k=1..n-1} k!*Stirling2(n-1,k)*C(n+k-1,n-1), n > 1, a(1)=1. - Vladimir Kruchinin, May 10 2011
O.g.f.: x*Sum_{n>=0} 1/(2 - n*x)^(n+1). - Paul D. Hanna, Oct 27 2014
a(n) ~ n^(n-1) * (LambertW(2*exp(1)))^n / (sqrt(1+LambertW(2*exp(1))) * 2^n * exp(n) * (LambertW(2*exp(1))-1)^(2*n-1)). - Vaclav Kotesovec, Oct 27 2014
Extensions
Signs removed by Michael Somos, based on Brian Drake's remark, Jun 06 2012
Comments