cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A052894 a(n) is the number of Schröder trees on n vertices with a prescribed root.

Original entry on oeis.org

1, 1, 5, 46, 631, 11586, 267369, 7442758, 242833091, 9090987610, 384209125453, 18096001098462, 939991769248239, 53388611049236386, 3291647968944928337, 218948960832551848438, 15629052780600654123739, 1191728692751208814306986, 96675526164560545405689141
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.
Number of pointed trees on pointed sets k[1...k...n] with a prescribed point k. - Gus Wiseman, Sep 27 2015

Examples

			The a(4) = 46 pointed trees of the form rootpoint[pointedbranch ... pointedbranch] on 1[1 2 3 4] are 1[1 2[2 3[3 4]]], 1[1 2[2 4[3 4]]], 1[1 2[2[2 4] 3]], 1[1 2[2[2 3] 4]], 1[1 2[2 3 4]], 1[1 3[2 3[3 4]]], 1[1 3[2[2 4] 3]], 1[1 3[3 4[2 4]]], 1[1 3[3[2 3] 4]], 1[1 3[2 3 4]], 1[1 4[2 4[3 4]]], 1[1 4[3 4[2 4]]], 1[1 4[2[2 3] 4]], 1[1 4[3[2 3] 4]], 1[1 4[2 3 4]], 1[1[1 3[3 4]] 2], 1[1[1 4[3 4]] 2], 1[1[1[1 4] 3] 2], 1[1[1[1 3] 4] 2], 1[1[1 3 4] 2], 1[1[1 2[2 4]] 3], 1[1[1 4[2 4]] 3], 1[1[1[1 4] 2] 3], 1[1[1[1 2] 4] 3], 1[1[1 2 4] 3], 1[1[1 2[2 3]] 4], 1[1[1 3[2 3]] 4], 1[1[1[1 3] 2] 4], 1[1[1[1 2] 3] 4], 1[1[1 2 3] 4], 1[1[1 2] 3[3 4]], 1[1[1 2] 4[3 4]], 1[1[1 3] 2[2 4]], 1[1[1 3] 4[2 4]], 1[1[1 4] 2[2 3]], 1[1[1 4] 3[2 3]], 1[1 2 3[3 4]], 1[1 2 4[3 4]], 1[1 2[2 4] 3], 1[1 3 4[2 4]], 1[1 2[2 3] 4], 1[1 3[2 3] 4], 1[1[1 4] 2 3], 1[1[1 3] 2 4], 1[1[1 2] 3 4], 1[1 2 3 4]. - _Gus Wiseman_, Sep 27 2015
		

Crossrefs

Programs

  • Maple
    spec := [S,{C=Set(B,1 <= card),B=Prod(Z,S),S=Sequence(C)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    m = 20; (* number of terms *)
    Rest@CoefficientList[InverseSeries[Series[2*x - x*E^x, {x, 0, m}], x], x]*Range[0, m-1]! (* Jean-François Alcover, Oct 11 2022 *)
  • PARI
    {a(n) = local(A=1); A = (1/x)*serreverse(2*x - x*exp(x +x^2*O(x^n) )); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 19 2015
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1); A = 1 + (1/x)*sum(m=1, n+1, Dx(m-1, (exp(x +x*O(x^n)) - 1)^m * x^m/m!)); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 19 2015
    
  • PARI
    {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
    {a(n)=local(A=1+x+x*O(x^n)); A = exp(sum(m=1, n+1, Dx(m-1, (exp(x +x*O(x^n)) - 1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Jun 19 2015

Formula

E.g.f.: RootOf(-2*_Z + _Z*exp(x*_Z) + 1).
a(n) = A053492(n)/n.
From Paul D. Hanna, Jun 19 2015: (Start)
E.g.f. A(x) satisfies:
(1) A(x) = (1/x) * Series_Reversion( 2*x - x*exp(x) ).
(2) A(x) = 1 + (1/x) * Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x)-1)^n * x^n / n!.
(3) A(x) = exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x)-1)^n * x^(n-1) / n! ).
(End)
(4) A(x) = Sum_{n>=0} exp(n*x*A(x)) / 2^(n+1). - Paul D. Hanna, Apr 07 2018
a(n) = (1/(n+1)!) * Sum_{k=0..n} (n+k)! * Stirling2(n,k). - Seiichi Manyama, Nov 06 2023

Extensions

New name from Vaclav Kotesovec, Feb 16 2015

A226513 Array read by antidiagonals: T(n,k) = number of barred preferential arrangements of k things with n bars (k >=0, n >= 0).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 8, 13, 1, 4, 15, 44, 75, 1, 5, 24, 99, 308, 541, 1, 6, 35, 184, 807, 2612, 4683, 1, 7, 48, 305, 1704, 7803, 25988, 47293, 1, 8, 63, 468, 3155, 18424, 87135, 296564, 545835, 1, 9, 80, 679, 5340, 37625, 227304, 1102419, 3816548, 7087261
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2013

Keywords

Comments

The terms of this sequence are also called high-order Fubini numbers (see p. 255 in Komatsu). - Stefano Spezia, Dec 06 2020

Examples

			Array begins:
  1  1   3   13    75    541     4683     47293     545835 ...
  1  2   8   44   308   2612    25988    296564    3816548 ...
  1  3  15   99   807   7803    87135   1102419   15575127 ...
  1  4  24  184  1704  18424   227304   3147064   48278184 ...
  1  5  35  305  3155  37625   507035   7608305  125687555 ...
  1  6  48  468  5340  69516  1014348  16372908  289366860 ...
  ...
Triangle begins:
  1,
  1, 1,
  1, 2, 3,
  1, 3, 8, 13,
  1, 4, 15, 44, 75,
  1, 5, 24, 99, 308, 541,
  1, 6, 35, 184, 807, 2612, 4683,
  1, 7, 48, 305, 1704, 7803, 25988, 47293,
  1, 8, 63, 468, 3155, 18424, 87135, 296564, 545835
  ........
[_Vincenzo Librandi_, Jun 18 2013]
		

References

  • Z.-R. Li, Computational formulae for generalized mth order Bell numbers and generalized mth order ordered Bell numbers (in Chinese), J. Shandong Univ. Nat. Sci. 42 (2007), 59-63.

Crossrefs

Columns 2, 3 = A005563, A226514.
Cf. A053492 (array diagonal), A265609, A346982.

Programs

  • Maple
    T:= (n, k)-> k!*coeff(series(1/(2-exp(x))^(n+1), x, k+1), x, k):
    seq(seq(T(d-k, k), k=0..d), d=0..10);  # Alois P. Heinz, Mar 26 2016
  • Mathematica
    T[n_, k_] := Sum[StirlingS2[k, i]*i!*Binomial[n+i, i], {i, 0, k}]; Table[ T[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 26 2016 *)

Formula

T(n,k) = Sum_{i=0..k} S2_k(i)*i!*binomial(n+i,i), where S2_k(i) is the Stirling number of the second kind. - Jean-François Alcover, Mar 26 2016
T(n,k) = k! * [x^k] 1/(2-exp(x))^(n+1). - Alois P. Heinz, Mar 26 2016
Conjectural g.f. for row n as a continued fraction of Stieltjes type: 1/(1 - (n+1)*x/(1 - 2*x/(1 - (n+2)*x/(1 - 4*x/(1 - (n+3)*x/(1 - 6*x/(1 - ... ))))))). Cf. A265609. - Peter Bala, Aug 27 2023
From Seiichi Manyama, Nov 19 2023: (Start)
T(n,0) = 1; T(n,k) = Sum_{j=1..k} (n*j/k + 1) * binomial(k,j) * T(n,k-j).
T(n,0) = 1; T(n,k) = (n+1)*T(n,k-1) - 2*Sum_{j=1..k-1} (-1)^j * binomial(k-1,j) * T(n,k-j). (End)
G.f. for row n: (1/n!) * Sum_{m>=0} (n+m)! * x^m / Product_{j=1..m} (1 - j*x), for n >= 0. - Paul D. Hanna, Feb 01 2024

A317658 Number of positions in the n-th free pure symmetric multifunction (with empty expressions allowed) with one atom.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 4, 4, 5, 6, 5, 5, 6, 7, 4, 6, 6, 7, 8, 5, 7, 7, 8, 5, 9, 5, 6, 8, 8, 9, 5, 6, 10, 6, 5, 7, 9, 9, 10, 6, 7, 11, 7, 6, 8, 10, 10, 6, 11, 7, 8, 12, 8, 7, 9, 11, 11, 7, 12, 8, 9, 13, 5, 9, 8, 10, 12, 12, 8, 13, 9, 10, 14, 6, 10, 9, 11, 13, 13
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)].
Also the number of positions in the orderless Mathematica expression with e-number n.

Examples

			The first twenty Mathematica expressions:
   1: o
   2: o[]
   3: o[][]
   4: o[o]
   5: o[][][]
   6: o[o][]
   7: o[][][][]
   8: o[o[]]
   9: o[][o]
  10: o[o][][]
  11: o[][][][][]
  12: o[o[]][]
  13: o[][o][]
  14: o[o][][][]
  15: o[][][][][][]
  16: o[o,o]
  17: o[o[]][][]
  18: o[][o][][]
  19: o[o][][][][]
  20: o[][][][][][][]
		

Crossrefs

First differs from A277615 at a(128) = 5, A277615(128) = 6.

Programs

  • Mathematica
    nn=100;
    radQ[n_]:=If[n===1,False,GCD@@FactorInteger[n][[All,2]]===1];
    rad[n_]:=rad[n]=If[n===0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
    Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn];
    exp[n_]:=If[n===1,x,With[{g=GCD@@FactorInteger[n][[All,2]]},Apply[exp[radPi[Power[n,1/g]]],exp/@Flatten[Cases[FactorInteger[g],{p_?PrimeQ,k_}:>ConstantArray[PrimePi[p],k]]]]]];
    Table[exp[n],{n,1,nn}]

Formula

a(rad(x)^(prime(y_1) * ... * prime(y_k))) = a(x) + a(y_1) + ... + a(y_k).
e(2^(2^n)) = o[o,...,o].
e(2^prime(2^prime(2^...))) = o[o[...o[o]]].
e(rad(rad(rad(...)^2)^2)^2) = o[o][o]...[o].

A317875 Number of achiral free pure multifunctions with n unlabeled leaves.

Original entry on oeis.org

1, 1, 3, 9, 30, 102, 369, 1362, 5181, 20064, 79035, 315366, 1272789, 5185080, 21296196, 88083993, 366584253, 1533953100, 6449904138, 27238006971, 115475933202, 491293053093, 2096930378415, 8976370298886, 38528771056425, 165784567505325
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

An achiral free pure multifunction is either (case 1) the leaf symbol "o", or (case 2) a nonempty expression of the form h[g, ..., g], where h and g are both achiral free pure multifunctions.

Examples

			The first 4 terms count the following multifunctions.
o,
o[o],
o[o,o], o[o[o]], o[o][o],
o[o,o,o], o[o[o][o]], o[o[o[o]]], o[o[o,o]], o[o][o,o], o[o][o[o]], o[o][o][o], o[o,o][o], o[o[o]][o].
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=If[n==1,1,Sum[a[n-k]*Sum[a[d],{d,Divisors[k]}],{k,n-1}]];
    Array[a,12]
  • PARI
    seq(n)={my(p=O(x)); for(n=1, n, p = x + p*(sum(k=1, n-1, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
    
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-1, v[i]*sumdiv(n-i, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018

Formula

a(1) = 1; a(n > 1) = Sum_{0 < k < n} a(n - k) * Sum_{d|k} a(d).
From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x + A(x) * Sum_{k>=1} A(x^k).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x + (Sum_{n>=1} a(n)*x^n) * (Sum_{n>=1} a(n)*x^n/(1 - x^n)). (End)

A317654 Number of free pure symmetric multifunctions whose leaves are a strongly normal multiset of size n.

Original entry on oeis.org

1, 3, 26, 375, 6696, 159837, 4389226, 144915350, 5377002075, 227624621051, 10632808475596, 550932945236121, 31062550998284221, 1907051034025848314, 126052420069459211076, 8956882232940915920404, 679298518935625486287703, 54868537321267493152151502, 4696952405203792017289469056
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

A multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities. A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.

Examples

			The a(3) = 26 free pure symmetric multifunctions:
1[1[1]], 1[1,1], 1[1][1],
1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1],
1[2[3]], 1[3[2]], 1[2,3], 2[1[3]], 2[3[1]], 2[1,3], 3[1[2]], 3[2[1]], 3[1,2], 1[2][3], 2[1][3], 1[3][2], 3[1][2], 2[3][1], 3[2][1].
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    exprUsing[m_]:=exprUsing[m]=If[Length[m]==0,{},If[Length[m]==1,{First[m]},Join@@Cases[Union[Table[PR[m[[s]],m[[Complement[Range[Length[m]],s]]]],{s,Take[Subsets[Range[Length[m]]],{2,-2}]}]],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h],Union[Sort/@Tuples[exprUsing/@p]]}],{p,mps[g]}]]]];
    got[y_]:=Join@@Table[Table[i,{y[[i]]}],{i,Range[Length[y]]}];
    Table[Sum[Length[exprUsing[got[y]]],{y,IntegerPartitions[n]}],{n,6}]
  • PARI
    \\ See links in A339645 for combinatorial species functions.
    cycleIndexSeries(n)={my(p=O(x)); for(n=1, n, p = x*sv(1) + p*(sExp(p)-1)); p}
    StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Jan 01 2021

Extensions

Terms a(8) and beyond from Andrew Howroyd, Jan 01 2021

A317652 Number of free pure symmetric multifunctions whose leaves are an integer partition of n.

Original entry on oeis.org

1, 1, 2, 6, 22, 93, 421, 2010, 9926, 50357, 260728, 1372436, 7321982, 39504181, 215168221, 1181540841, 6534058589, 36357935615, 203414689462, 1143589234086, 6457159029573, 36602333187792, 208214459462774, 1188252476400972, 6801133579291811, 39032172166792887
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.

Examples

			The a(4) = 22 free pure symmetric multifunctions:
  1[1[1[1]]]  1[1[2]]  1[3]  2[2]  4
  1[1[1][1]]  1[2[1]]  3[1]
  1[1][1[1]]  2[1[1]]
  1[1[1]][1]  1[1][2]
  1[1][1][1]  1[2][1]
  1[1[1,1]]   2[1][1]
  1[1,1[1]]   1[1,2]
  1[1][1,1]   2[1,1]
  1[1,1][1]
  1[1,1,1]
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    exprUsing[m_]:=exprUsing[m]=If[Length[m]==0,{{}},If[Length[m]==1,{First[m]},Join@@Cases[Union[Table[PR[m[[s]],m[[Complement[Range[Length[m]],s]]]],{s,Take[Subsets[Range[Length[m]]],{2,-2}]}]],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h],Union[Sort/@Tuples[exprUsing/@p]]}],{p,mps[g]}]]]];
    Table[Sum[Length[exprUsing[y]],{y,IntegerPartitions[n]}],{n,0,6}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    seq(n)={my(v=[]); for(n=1, n, my(t=EulerT(v)); v=concat(v, 1 + sum(k=1, n-1, v[k]*t[n-k]))); concat([1],v)} \\ Andrew Howroyd, Aug 28 2018

Extensions

Terms a(12) and beyond from Andrew Howroyd, Aug 28 2018

A317653 Number of free pure symmetric multifunctions whose leaves are a normal multiset of size n.

Original entry on oeis.org

1, 3, 34, 602, 14872, 472138, 18323359, 840503724, 44489123726, 2668985463839, 178960530393633, 13263068003965046, 1076580864432281157, 94987639225399100006, 9051397653144246683937, 926407121115738135640677, 101357200280211387377806719, 11804887470887800839909147484
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers. A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.

Examples

			The a(3) = 34 free pure symmetric multifunctions:
1[1[1]], 1[1,1], 1[1][1],
1[2[2]], 1[2,2], 2[1[2]], 2[2[1]], 2[1,2], 1[2][2], 2[1][2], 2[2][1],
1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1],
1[2[3]], 1[3[2]], 1[2,3], 2[1[3]], 2[3[1]], 2[1,3], 3[1[2]], 3[2[1]], 3[1,2], 1[2][3], 2[1][3], 1[3][2], 3[1][2], 2[3][1], 3[2][1].
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    exprUsing[m_]:=exprUsing[m]=If[Length[m]==0,{},If[Length[m]==1,{First[m]},Join@@Cases[Union[Table[PR[m[[s]],m[[Complement[Range[Length[m]],s]]]],{s,Take[Subsets[Range[Length[m]]],{2,-2}]}]],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h],Union[Sort/@Tuples[exprUsing/@p]]}],{p,mps[g]}]]]];
    got[y_]:=Join@@Table[Table[i,{y[[i]]}],{i,Range[Length[y]]}];
    Table[Sum[Length[exprUsing[got[y]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,6}]
  • PARI
    \\ here R(n,1) is A052893.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    R(n,k)={my(v=[k]); for(n=2, n, my(t=EulerT(v)); v=concat(v, sum(k=1, n-1, v[k]*t[n-k]))); v}
    seq(n)={sum(k=1, n, R(n,k)*sum(r=k, n, binomial(r,k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018

Extensions

Terms a(8) and beyond from Andrew Howroyd, Sep 14 2018

A317876 Number of free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 67, 184, 519, 1489, 4342, 12812, 38207, 114934, 348397, 1063050, 3262588, 10064645, 31190985, 97061431, 303165207, 950115502, 2986817742, 9415920424, 29760442192, 94286758293, 299377379027, 952521579944, 3036380284111, 9696325863803
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A free pure symmetric identity multifunction (with empty expressions allowed) (FOI) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an FOI, each of the g_i for i = 1, ..., k >= 0 is an FOI, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in an FOI is the number of brackets [...] plus the number of o's.
Also the number of free orderless identity Mathematica expressions with one atom and n positions.

Examples

			The a(5) = 10 FOIs:
  o[o[o]]
  o[o][o]
  o[o[][]]
  o[o,o[]]
  o[][o[]]
  o[][][o]
  o[o[]][]
  o[][o][]
  o[o][][]
  o[][][][]
		

Crossrefs

Programs

  • Mathematica
    allIdExpr[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdExpr[h],Select[Union[Sort/@Tuples[allIdExpr/@p]],UnsameQ@@#&]}],{p,IntegerPartitions[g]}]]];
    Table[Length[allIdExpr[n]],{n,12}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018

Formula

From Ilya Gutkovskiy, Apr 30 2019: (Start)
G.f. A(x) satisfies: A(x) = x * (1 + A(x) * exp(Sum_{k>=1} (-1)^(k+1)*A(x^k)/k)).
G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + (Sum_{n>=1} a(n)*x^n) * Product_{n>=1} (1 + x^n)^a(n)). (End)

Extensions

Terms a(16) and beyond from Andrew Howroyd, Aug 19 2018

A317877 Number of free pure identity multifunctions with one atom and n positions.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 5, 10, 18, 46, 94, 212, 476, 1058, 2441, 5564, 12880, 29920, 69620, 163220, 383376, 904114, 2139592, 5074784, 12074152, 28789112, 68803148, 164779064, 395373108, 950416330, 2288438591, 5518864858, 13329183894, 32237132814, 78069124640
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A free pure identity multifunction (PIM) is either (case 1) the leaf symbol "o", or (case 2) an expression of the form h[g_1, ..., g_k] where h is a PIM, each of the g_i for i = 1, ..., k > 0 is a PIM, and for i != j we have g_i != g_j. The number of positions in a PIM is the number of brackets [...] plus the number of o's.

Examples

			The a(8) = 10 PIMs:
  o[o[o[o],o]]
  o[o[o,o[o]]]
  o[o[o[o]],o]
  o[o[o][o],o]
  o[o,o[o[o]]]
  o[o,o[o][o]]
  o[o][o[o],o]
  o[o][o,o[o]]
  o[o[o],o][o]
  o[o,o[o]][o]
		

Crossrefs

Programs

  • Mathematica
    allIdPMF[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-2}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdPMF[h],Select[Tuples[allIdPMF/@p],UnsameQ@@#&]}],{p,Join@@Permutations/@IntegerPartitions[g]}]]];
    Table[Length[allIdPMF[n]],{n,12}]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=sum(k=1, n-2, v[n-k-1]*subst(serlaplace(y^0*polcoef(p, k)), y, 1))); v} \\ Andrew Howroyd, Sep 01 2018

Extensions

Terms a(13) and beyond from Andrew Howroyd, Sep 01 2018

A317878 Number of free pure symmetric identity multifunctions with one atom and n positions.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 5, 5, 15, 23, 54, 98, 212, 420, 886, 1822, 3838, 8046, 17029, 36097, 76889, 164245, 351971, 756341, 1629389, 3518643, 7614717, 16512962, 35875986, 78082171, 170219300, 371651968, 812624721, 1779240627, 3900634491, 8561723769, 18814112811
Offset: 1

Views

Author

Gus Wiseman, Aug 09 2018

Keywords

Comments

A free pure symmetric identity multifunction (SIM) is either (case 1) the leaf symbol "o", or (case 2) an expression of the form h[g_1, ..., g_k] where h is a SIM, each of the g_i for i = 1, ..., k > 0 is a SIM, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in a SIM is the number of brackets [...] plus the number of o's.

Examples

			The a(8) = 5 SIMs:
  o[o[o,o[o]]]
  o[o,o[o[o]]]
  o[o,o[o][o]]
  o[o][o,o[o]]
  o[o,o[o]][o]
		

Crossrefs

Programs

  • Mathematica
    allIdPMFOL[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-2}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdPMFOL[h],Select[Union[Sort/@Tuples[allIdPMFOL/@p]],UnsameQ@@#&]}],{p,IntegerPartitions[g]}]]];
    Table[Length[allIdPMFOL[n]],{n,12}]
  • PARI
    WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
    seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018

Extensions

Terms a(13) and beyond from Andrew Howroyd, Aug 19 2018
Showing 1-10 of 30 results. Next