A317876
Number of free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions.
Original entry on oeis.org
1, 1, 2, 4, 10, 25, 67, 184, 519, 1489, 4342, 12812, 38207, 114934, 348397, 1063050, 3262588, 10064645, 31190985, 97061431, 303165207, 950115502, 2986817742, 9415920424, 29760442192, 94286758293, 299377379027, 952521579944, 3036380284111, 9696325863803
Offset: 1
The a(5) = 10 FOIs:
o[o[o]]
o[o][o]
o[o[][]]
o[o,o[]]
o[][o[]]
o[][][o]
o[o[]][]
o[][o][]
o[o][][]
o[][][][]
-
allIdExpr[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdExpr[h],Select[Union[Sort/@Tuples[allIdExpr/@p]],UnsameQ@@#&]}],{p,IntegerPartitions[g]}]]];
Table[Length[allIdExpr[n]],{n,12}]
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
A317877
Number of free pure identity multifunctions with one atom and n positions.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 5, 10, 18, 46, 94, 212, 476, 1058, 2441, 5564, 12880, 29920, 69620, 163220, 383376, 904114, 2139592, 5074784, 12074152, 28789112, 68803148, 164779064, 395373108, 950416330, 2288438591, 5518864858, 13329183894, 32237132814, 78069124640
Offset: 1
The a(8) = 10 PIMs:
o[o[o[o],o]]
o[o[o,o[o]]]
o[o[o[o]],o]
o[o[o][o],o]
o[o,o[o[o]]]
o[o,o[o][o]]
o[o][o[o],o]
o[o][o,o[o]]
o[o[o],o][o]
o[o,o[o]][o]
-
allIdPMF[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-2}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdPMF[h],Select[Tuples[allIdPMF/@p],UnsameQ@@#&]}],{p,Join@@Permutations/@IntegerPartitions[g]}]]];
Table[Length[allIdPMF[n]],{n,12}]
-
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=sum(k=1, n-2, v[n-k-1]*subst(serlaplace(y^0*polcoef(p, k)), y, 1))); v} \\ Andrew Howroyd, Sep 01 2018
A317878
Number of free pure symmetric identity multifunctions with one atom and n positions.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 5, 5, 15, 23, 54, 98, 212, 420, 886, 1822, 3838, 8046, 17029, 36097, 76889, 164245, 351971, 756341, 1629389, 3518643, 7614717, 16512962, 35875986, 78082171, 170219300, 371651968, 812624721, 1779240627, 3900634491, 8561723769, 18814112811
Offset: 1
The a(8) = 5 SIMs:
o[o[o,o[o]]]
o[o,o[o[o]]]
o[o,o[o][o]]
o[o][o,o[o]]
o[o,o[o]][o]
-
allIdPMFOL[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-2}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdPMFOL[h],Select[Union[Sort/@Tuples[allIdPMFOL/@p]],UnsameQ@@#&]}],{p,IntegerPartitions[g]}]]];
Table[Length[allIdPMFOL[n]],{n,12}]
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
A317879
Number of free pure identity multifunctions (with empty expressions allowed) with one atom and n positions.
Original entry on oeis.org
1, 1, 2, 4, 11, 29, 83, 251, 767, 2403, 7652, 24758, 80875, 266803, 887330, 2972108, 10016981, 33942461, 115572864, 395226810, 1356840007, 4674552089, 16156355357, 56003840659, 194651585875, 678220460687, 2368505647624, 8288873657180, 29064904732911
Offset: 1
The a(5) = 11 IMEs:
o[o[o]]
o[o][o]
o[o[][]]
o[o[],o]
o[o,o[]]
o[][o[]]
o[][][o]
o[o[]][]
o[][o][]
o[o][][]
o[][][][]
-
allIdExpr[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdExpr[h],Select[Tuples[allIdExpr/@p],UnsameQ@@#&]}],{p,Join@@Permutations/@IntegerPartitions[g]}]]];
Table[Length[allIdExpr[n]],{n,12}]
-
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=v[n-1]+sum(k=1, n-2, v[n-k-1]*subst(serlaplace(y^0*polcoef(p, k)), y, 1))); v} \\ Andrew Howroyd, Sep 01 2018
A317880
Number of series-reduced free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions.
Original entry on oeis.org
1, 1, 1, 1, 2, 4, 8, 16, 33, 70, 152, 333, 735, 1635, 3668, 8285, 18823, 42970, 98535, 226870, 524290, 1215641, 2827203, 6593432, 15416197, 36129894, 84860282, 199719932, 470930802, 1112388190, 2631903295, 6236669381, 14800078408, 35169529363, 83680908692
Offset: 1
The a(7) = 8 SROIs:
o[o,o[][][]]
o[o[],o[][]]
o[][o,o[][]]
o[][][o,o[]]
o[o,o[][]][]
o[][o,o[]][]
o[o,o[]][][]
o[][][][][][]
-
allIdExprSR[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdExprSR[h],Select[Union[Sort/@Tuples[allIdExprSR/@p]],UnsameQ@@#&]}],{p,If[g==0,{{}},Rest[IntegerPartitions[g]]]}]]];
Table[Length[allIdExprSR[n]],{n,12}]
-
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)-v); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ Andrew Howroyd, Aug 19 2018
A317881
Number of series-reduced free pure identity multifunctions (with empty expressions allowed) with one atom and n positions.
Original entry on oeis.org
1, 1, 1, 1, 3, 7, 15, 37, 91, 231, 593, 1557, 4111, 10941, 29295, 79087, 215015, 587463, 1611985, 4441473, 12284513, 34095797, 94931525, 265061363, 742029431, 2082310665, 5856540305, 16505796865, 46608877763, 131850193107, 373612733107, 1060339387939, 3013758348317
Offset: 1
The a(6) = 7 SRIMs:
o[o[][],o]
o[o,o[][]]
o[][o[],o]
o[][o,o[]]
o[o[],o][]
o[o,o[]][]
o[][][][][]
-
allIdExprSR[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdExprSR[h],Select[Tuples[allIdExprSR/@p],UnsameQ@@#&]}],{p,If[g==0,{{}},Join@@Permutations/@Rest[IntegerPartitions[g]]]}]]];
Table[Length[allIdExprSR[n]],{n,12}]
-
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=v[n-1]+sum(k=1, n-2, v[n-k-1]*(subst(serlaplace(y^0*polcoef(p, k)), y, 1)-v[k]))); v} \\ Andrew Howroyd, Sep 01 2018
A317882
Number of free pure achiral multifunctions (with empty expressions allowed) with one atom and n positions.
Original entry on oeis.org
1, 1, 2, 5, 12, 31, 79, 211, 564, 1543, 4259, 11899, 33526, 95272, 272544, 784598, 2270888, 6604900, 19293793, 56581857, 166523462, 491674696, 1455996925, 4323328548, 12869353254, 38396655023, 114803257039, 343932660450, 1032266513328, 3103532577722
Offset: 1
The a(5) = 12 AMEs:
o[o[o]]
o[o][o]
o[o[][]]
o[o,o,o]
o[][o[]]
o[][o,o]
o[][][o]
o[o[]][]
o[o,o][]
o[][o][]
o[o][][]
o[][][][]
-
a[n_]:=If[n==1,1,Sum[a[k]*If[k==n-1,1,Sum[a[d],{d,Divisors[n-k-1]}]],{k,n-1}]];
Array[a,12]
-
seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*(1 + sum(k=1, n-2, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
-
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=v[n-1] + sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018
A317883
Number of free pure achiral multifunctions with one atom and n positions.
Original entry on oeis.org
1, 0, 1, 1, 3, 4, 10, 17, 37, 70, 150, 299, 634, 1311, 2786, 5879, 12584, 26904, 58005, 125242, 271819, 591297, 1290976, 2825170, 6199964, 13635749, 30057649, 66386206, 146903289, 325637240, 723024160, 1607805207, 3580476340, 7984266625, 17827226469
Offset: 1
The a(7) = 10 PAMs:
o[o[o[o]]]
o[o[o][o]]
o[o][o[o]]
o[o[o]][o]
o[o][o][o]
o[o[o,o,o]]
o[o][o,o,o]
o[o,o][o,o]
o[o,o,o][o]
o[o,o,o,o,o]
-
a[n_]:=If[n==1,1,Sum[a[k]*Sum[a[d],{d,Divisors[n-k-1]}],{k,n-2}]];
Array[a,12]
-
seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*sum(k=1, n-2, subst(p + O(x^(n\k+1)), x, x^k) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
-
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, v[d]))); v} \\ Andrew Howroyd, Aug 19 2018
A317884
Number of series-reduced achiral free pure multifunctions (with empty expressions allowed) with one atom and n positions.
Original entry on oeis.org
1, 1, 1, 2, 4, 8, 14, 26, 47, 87, 160, 295, 540, 997, 1832, 3369, 6197, 11406, 20975, 38594, 70991, 130610, 240275, 442043, 813184, 1496053, 2752251, 5063319, 9314879, 17136632, 31526032, 57998423, 106699160, 196294065, 361120800, 664352454, 1222204958
Offset: 1
The a(6) = 8 SRAEs:
o[o,o,o,o]
o[o[],o[]]
o[][o,o,o]
o[][][o,o]
o[o,o,o][]
o[][o,o][]
o[o,o][][]
o[][][][][]
-
a:= proc(n) option remember; `if`(n=1, 1, a(n-1)+add(a(j)*add(
a(d), d=numtheory[divisors](n-j-1) minus {n-j-1}), j=1..n-1))
end:
seq(a(n), n=1..45); # Alois P. Heinz, Sep 05 2018
-
allAchExprSR[n_] := If[n == 1, {"o"}, Join @@ Cases[Table[PR[k, n - k - 1], {k, n - 1}], PR[h_, g_] :> Join @@ Table[Apply @@@ Tuples[{allAchExprSR[h], Select[Tuples[allAchExprSR /@ p], SameQ @@ # &]}], {p, If[g == 0, {{}}, Join @@ Permutations /@ Rest[IntegerPartitions[g]]]}]]]; Table[Length[allAchExprSR[n]], {n, 12}]
(* Second program: *)
a[n_] := a[n] = If[n == 1, 1, a[n-1] + Sum[a[j]*DivisorSum[
n-j-1, If[# < n-j-1, a[#], 0]&], {j, 1, n-2}]];
Array[a, 45] (* Jean-François Alcover, May 17 2021, after Alois P. Heinz *)
-
seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*(1 + sum(k=2, n-2, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
-
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=v[n-1] + sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, if(dAndrew Howroyd, Aug 19 2018
A317885
Number of series-reduced free pure achiral multifunctions with one atom and n positions.
Original entry on oeis.org
1, 0, 0, 1, 1, 1, 2, 3, 4, 7, 9, 14, 21, 32, 45, 69, 103, 153, 224, 338, 500, 746, 1107, 1645, 2447, 3652, 5413, 8052, 11993, 17834, 26500, 39447, 58655, 87240, 129772, 193001, 287034, 427014, 635048, 944501, 1404910, 2089633, 3107864, 4622670, 6875533
Offset: 1
The a(10) = 7 SRAMs:
o[o[o,o],o[o,o]]
o[o,o][o,o][o,o]
o[o,o][o,o,o,o,o]
o[o,o,o][o,o,o,o]
o[o,o,o,o][o,o,o]
o[o,o,o,o,o][o,o]
o[o,o,o,o,o,o,o,o]
Cf.
A001003,
A001678,
A002033,
A003238,
A052893,
A053492,
A067824,
A167865,
A214577,
A317853,
A317875.
-
a[n_]:=If[n==1,1,Sum[a[k]*Sum[a[d],{d,Most[Divisors[n-k-1]]}],{k,n-2}]];
Array[a,12]
-
seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*sum(k=2, n-2, subst(p + O(x^(n\k+1)), x, x^k)) + O(x*x^n)); Vec(p)} \\ Andrew Howroyd, Aug 19 2018
-
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, if(dAndrew Howroyd, Aug 19 2018
Showing 1-10 of 12 results.
Comments