A048174 Number of labeled chains with n edges.
1, 1, 7, 73, 1051, 19381, 436087, 11585953, 354981571, 12322179901, 477938035807, 20485584143113, 961567521142411, 49054912287659461, 2702571588828034567, 159911968233095867953, 10114120854154243738771, 680943323845807848142861, 48622150270026820216099567, 3670113810844512283440027673
Offset: 1
A058349 Number of connected labeled series-parallel posets on n nodes.
1, 2, 12, 122, 1740, 31922, 715932, 18978122, 580513260, 20125554242, 779832497532, 33398722757402, 1566656717322060, 79879485803841362, 4398701789915269212, 260166428897541369962, 16449181879032096013740, 1107112451498156565581282, 79030557433744270179981372
Offset: 1
Comments
Also, number of labeled blobs with n edges.
References
- R. C. Read, Graphical enumeration by cycle-index sums: first steps toward a unified treatment, preprint, Sept. 26, 1991.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.39, page 133, g(n).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- R. P. Stanley, Enumeration of posets generated by disjoint unions and ordinal sums, Proc. Amer. Math. Soc. 45 (1974), 295-299.
- Index entries for sequences related to posets
Programs
-
Maple
(continue from A053554) t1 := log(1+EGF053554): t2 := series(t1,x,30); SERIESTOLISTMULT(t2);
-
Mathematica
Drop[ CoefficientList[ InverseSeries[ Series[x + 2*(1 - Cosh[x]) , {x, 0, 19}], y], y], 1]* Range[19]! (* Jean-François Alcover, Sep 21 2011, after g.f. *)
-
Maxima
a(n):=if n=1 then 1 else (n-1)!*sum(binomial(n+k-1,n-1)*sum(binomial(k,j)*((sum((binomial(j,l)*((-1)^(n-l+j-1)+1)*sum(binomial(j-l,r)*2^(j-l-r-1)*(-1)^(r-j)*sum((r-2*i)^(n-l+j-1)*binomial(r,i),i,0,r),r,1,j-l))/(n-l+j-1)!,l,0,j-1))),j,1,k),k,1,n-1); /* Vladimir Kruchinin, Feb 19 2012 */
-
PARI
/* Joerg Arndt, Feb 04 2011 */ x='x+O('x^55); t=x+2*(1-cosh(x)); Vec(serlaplace(serreverse(t))) /* show terms */
Formula
Read (1991) reference gives generating functions (see PARI code for one example).
a(n) = (n-1)!*sum(k=1..n-1, binomial(n+k-1,n-1)*sum(j=1..k, binomial(k,j)*((sum(l=0..j-1, (binomial(j,l)*((-1)^(n-l+j-1)+1)*sum(r=1..j-l, binomial(j-l,r)*2^(j-l-r-1)*(-1)^(r-j)*sum(i=0..r, (r-2*i)^(n-l+j-1)*binomial(r,i))))/(n-l+j-1)!))))), n>1, a(1)=1. - Vladimir Kruchinin, Feb 19 2012
a(n) ~ n^(n-1) / (5^(1/4)*exp(n)*(2-sqrt(5)+log((1+sqrt(5))/2))^(n-1/2)). - Vaclav Kotesovec, Mar 09 2014
Extensions
More terms from Joerg Arndt, Feb 04 2011
A202180 Number of n-element unlabeled connected N-free posets.
1, 1, 3, 9, 31, 115, 474, 2097, 9967, 50315, 268442, 1505463, 8840306, 54169431
Offset: 1
Links
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004), no. 1-3, 165-175.
Extensions
Missing term a(12) inserted by Salah Uddin Mohammad, May 26 2020
A202181 Triangle read by rows: T(n,k) = number of n-element unlabeled N-free posets of height k (1 <= k <= n).
1, 1, 1, 1, 3, 1, 1, 7, 6, 1, 1, 13, 24, 10, 1, 1, 25, 77, 61, 15, 1, 1, 43, 228, 291, 130, 21, 1, 1, 76, 644, 1229, 856, 246, 28, 1, 1, 128, 1776, 4872, 4840, 2136, 427, 36, 1, 1, 216, 4854, 18711, 25107, 15543, 4733, 694, 45, 1, 1, 354, 13184, 70858, 124167, 101538, 43120, 9577, 1071, 55, 1
Offset: 1
Examples
Triangle begins: 1 1 1 1 3 1 1 7 6 1 1 13 24 10 1 1 25 77 61 15 1 1 43 228 291 130 21 1 1 76 644 1229 856 246 28 1 1 128 1776 4872 4840 2136 427 36 1 1 216 4854 18711 25107 15543 4733 694 45 1 1 354 13184 70858 124167 101538 43120 9577 1071 55 1 ...
Links
- Soheir M. Khamis, Height counting of unlabeled interval and N-free posets, Discrete Math. 275 (2004), no. 1-3, 165-175.
Comments
References
Links
Programs
Maple
Mathematica
Maxima
PARI
Formula
Extensions