A053556 Denominator of Sum_{k=0..n} (-1)^k/k!.
1, 1, 2, 3, 8, 30, 144, 280, 5760, 45360, 44800, 3991680, 43545600, 172972800, 6706022400, 93405312000, 42268262400, 22230464256000, 376610217984000, 250298560512000, 11640679464960000, 196503623737344000, 17841281393295360000
Offset: 0
Examples
1, 0, 1/2, 1/3, 3/8, 11/30, 53/144, 103/280, 2119/5760, ...
References
- L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
- E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..450 (terms 0..100 from T. D. Noe)
- Leonhardo Eulero, Introductio in analysin infinitorum. Tomus primus, Lausanne, 1748.
- L. Euler, Introduction à l'analyse infinitésimale, Tome premier, Tome second, trad. du latin en français par J. B. Labey, Paris, 1796-1797.
- Eric Weisstein's World of Mathematics, Subfactorial
Crossrefs
Programs
-
Magma
[Denominator( (&+[(-1)^k/Factorial(k): k in [0..n]]) ): n in [0..20]]; // G. C. Greubel, May 16 2019
-
Mathematica
Table[Denominator[Sum[(-1)^k/k!, {k, 0, n}]], {n, 0, 20}] (* Robert G. Wilson v, Oct 13 2005 *) Table[ Denominator[1 - Subfactorial[n]/n!], {n, 0, 22}] (* Jean-François Alcover, Feb 11 2014 *) Denominator[Accumulate[Table[(-1)^k/k!,{k,0,30}]]] (* Harvey P. Dale, Aug 22 2016 *)
-
PARI
for(n=0,50, print1(denominator(sum(k=0,n,(-1)^k/k!)), ", ")) \\ G. C. Greubel, Nov 05 2017
-
Python
from math import factorial from fractions import Fraction def A053556(n): return sum(Fraction(-1 if k&1 else 1,factorial(k)) for k in range(n+1)).denominator # Chai Wah Wu, Jul 31 2023
-
Sage
[denominator(sum((-1)^k/factorial(k) for k in (0..n))) for n in (0..20)] # G. C. Greubel, May 16 2019
Formula
Let exp(-x)/(1-x) = Sum_{n>=0} (a_n/b_n) * x^n. Then sequence b_n is A053556. - Aleksandar Petojevic, Apr 14 2004
Extensions
More terms from Vladeta Jovovic, Mar 31 2000
Comments