A053557 Numerator of Sum_{k=0..n} (-1)^k/k!.
1, 0, 1, 1, 3, 11, 53, 103, 2119, 16687, 16481, 1468457, 16019531, 63633137, 2467007773, 34361893981, 15549624751, 8178130767479, 138547156531409, 92079694567171, 4282366656425369, 72289643288657479, 6563440628747948887, 39299278806015611311
Offset: 0
Examples
1, 0, 1/2, 1/3, 3/8, 11/30, 53/144, 103/280, 2119/5760, ...
References
- L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 562.
- E. Maor, e: The Story of a Number, Princeton Univ. Press 1994, pp. 151 and 157.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..450 (terms 0..100 from T. D. Noe)
- Leonhardo Eulero, Introductio in analysin infinitorum. Tomus primus, Lausanne, 1748.
- L. Euler, Introduction à l'analyse infinitésimale, Tome premier, Tome second, trad. du latin en français par J. B. Labey, Paris, 1796-1797.
- Eric Weisstein's World of Mathematics, Continued Fraction Constants
- Eric Weisstein's World of Mathematics, Generalized Continued Fraction
- Eric Weisstein's World of Mathematics, Subfactorial
Crossrefs
Programs
-
Magma
[Numerator( (&+[(-1)^k/Factorial(k): k in [0..n]]) ): n in [0..30]]; // G. C. Greubel, May 16 2019
-
Mathematica
Numerator[CoefficientList[Series[Exp[-x]/(1-x), {x, 0, 30}], x]] (* Jean-François Alcover, Nov 18 2011 *) Table[Numerator[Sum[(-1)^k/k!,{k,0,n}]],{n,0,30}] (* Harvey P. Dale, Dec 02 2011 *) Join[{1, 0}, Numerator[RecurrenceTable[{a[n]==a[n-1]+a[n-2]/(n-2), a[1] ==0, a[2]==1}, a, {n,2,30}]]] (* Terry D. Grant, May 07 2017; corrected by G. C. Greubel, May 16 2019 *)
-
PARI
for(n=0, 30, print1(numerator(sum(k=0,n, (-1)^k/k!)), ", ")) \\ G. C. Greubel, Nov 05 2017
-
Python
from fractions import Fraction from math import factorial def A053557(n): return sum(Fraction(-1 if k&1 else 1,factorial(k)) for k in range(n+1)).numerator # Chai Wah Wu, Jul 31 2023
-
Sage
[numerator(sum((-1)^k/factorial(k) for k in (0..n))) for n in (0..30)] # G. C. Greubel, May 16 2019
Formula
Let exp(-x)/(1-x) = Sum_{n >= 0} (a_n/b_n)*x^n. Then sequence a_n is A053557. - Aleksandar Petojevic, Apr 14 2004
Extensions
More terms from Vladeta Jovovic, Mar 31 2000
Comments