A053566 Expansion of (11*x-2)/(1-3*x)^2.
-2, -1, 12, 81, 378, 1539, 5832, 21141, 74358, 255879, 866052, 2893401, 9565938, 31355019, 102036672, 330024861, 1061819118, 3400690959, 10847773692, 34480423521, 109252577898, 345191655699
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
Crossrefs
Cf. A023444.
Programs
-
GAP
List([0..30], n-> 3^(n-1)*(5*n-6)) # G. C. Greubel, May 16 2019
-
Magma
[3^(n-1)*(5*n-6) : n in [0..30]]; // G. C. Greubel, May 16 2019
-
Mathematica
LinearRecurrence[{6,-9},{-2,-1},30] (* Harvey P. Dale, Jun 26 2012 *)
-
PARI
Vec((11*x-2)/(1-3*x)^2 + O(x^30)) \\ Michel Marcus, Dec 03 2014
-
Sage
[3^(n-1)*(5*n-6) for n in (0..30)] # G. C. Greubel, May 16 2019
Formula
a(n) = 3^(n-1)*(5*n-6).
a(n) = 6*a(n-1) - 9*a(n-2), with a(0) = -2, a(1) = -1.
E.g.f.: (5*x - 2)*exp(3*x). - G. C. Greubel, May 16 2019