A053598 Number of n-node unlabeled digraphs without isolated nodes.
1, 0, 2, 13, 202, 9390, 1531336, 880492496, 1792477159408, 13026163465206704, 341247403996148180800, 32522568124623933138617088, 11366712907916015518547782806784, 14669074325967499043636521641422216704, 70315641946149306808455637518883828774996992
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..60
Programs
-
Maple
b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add( igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])), add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i)) end: a:= n-> b(n$2, [])-`if`(n=0, 0, b(n-1$2, [])): seq(a(n), n=0..16); # Alois P. Heinz, Sep 04 2019
-
Mathematica
Needs["Combinatorica`"]; nn=15;s=Sum[NumberOfDirectedGraphs[n]x^n,{n,0,nn}];CoefficientList[Series[s (1-x),{x,0,nn}],x] (* Geoffrey Critzer, Oct 09 2012 *) Join[{1}, Table[GraphPolynomial[n, x, Directed] /. x -> 1, {n, 0, 15}] // Differences] (* Jean-François Alcover, Feb 04 2015 *)
-
Python
from itertools import combinations from math import prod, factorial, gcd from fractions import Fraction from sympy.utilities.iterables import partitions def A053598(n): return int(sum(Fraction(1<
Chai Wah Wu, Jul 05 2024
Formula
O.g.f.: A(x)*(1-x) where A(x) is o.g.f. for A000273. - Geoffrey Critzer, Oct 09 2012
Comments