A053632 Irregular triangle read by rows giving coefficients in expansion of Product_{k=1..n} (1 + x^k).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 6, 7, 7, 8, 8, 8, 8, 8, 7, 7, 6, 5, 5, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 1, 1, 1; 1, 1, 1, 2, 1, 1, 1; 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1; 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1; 1, 1, 1, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 4, 4, 4, 3, 2, 2, 1, 1, 1; ... Row n = 4 counts the following binary words, where k = sum of positions of zeros: 1111 0111 1011 0011 0101 0110 0001 0010 0100 1000 0000 1101 1110 1001 1010 1100 Row n = 5 counts the following strict partitions of k with all parts <= n (0 is the empty partition): 0 1 2 3 4 5 42 43 53 54 532 542 543 5431 5432 54321 21 31 32 51 52 431 432 541 5321 5421 41 321 421 521 531 4321
References
- A. V. Yurkin, New binomial and new view on light theory, (book), 2013, 78 pages, no publisher listed.
Links
- Alois P. Heinz, Rows n = 0..40, flattened
- S. R. Finch, Signum equations and extremal coefficients.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- FindStat - Combinatorial Statistic Finder, The major index of an integer composition
- Alexander Rosa and Štefan Znám, A combinatorial problem in the theory of congruences. (Russian), Mat.-Fys. Casopis Sloven. Akad. Vied 15 1965 49-59. [Annotated scanned copy] See Table 1.
- F. Wilcoxon, Individual Comparisons by Ranking Methods, Biometrics Bulletin, v. 1, no. 6 (1945), pp. 80-83.
- A. V. Yurkin, On similarity of systems of geometrical and arithmetic triangles, in Mathematics, Computing, Education Conference XIX, 2012.
- A. V. Yurkin, New view on the diffraction discovered by Grimaldi and Gaussian beams, arXiv preprint arXiv:1302.6287 [physics.optics], 2013.
- A. V. Yurkin, About the evident description of distribution of beams and "wavy geometrical trajectories" in long thin pipes, 2014 (original in Russian).
- A. V. Yurkin, Symmetric triangle of Pascal and non-linear arithmetic parallelepiped, Book Manuscript, Research Gate 2015.
Crossrefs
Rows reduced modulo 2 and interpreted as binary numbers: A068052, A068053. Rows converge towards A000009.
Row sums give A000079.
Cf. A285101 (multiplicative encoding of each row), A285103 (number of odd terms on row n), A285105 (number of even terms).
Row lengths are A000124.
A negative version is A231599.
Programs
-
Maple
with(gfun,seriestolist); map(op,[seq(seriestolist(series(mul(1+(z^i), i=1..n),z,binomial(n+1,2)+1)), n=0..10)]); # Antti Karttunen, Feb 13 2002 # second Maple program: g:= proc(n) g(n):= `if`(n=0, 1, expand(g(n-1)*(1+x^n))) end: T:= n-> seq(coeff(g(n), x, k), k=0..degree(g(n))): seq(T(n), n=0..10); # Alois P. Heinz, Nov 19 2012
-
Mathematica
Table[CoefficientList[ Series[Product[(1 + t^i), {i, 1, n}], {t, 0, 100}], t], {n, 0, 8}] // Grid (* Geoffrey Critzer, May 16 2010 *)
Formula
From Mitch Harris, Mar 23 2006: (Start)
T(n,k) = T(n-1, k) + T(n-1, k-n), T(0,0)=1, T(0,k) = 0, T(n,k) = 0 if k < 0 or k > (n+1 choose 2).
G.f.: (1+x)*(1+x^2)*...*(1+x^n). (End)
Sum_{k>=0} k * T(n,k) = A001788(n). - Alois P. Heinz, Feb 09 2017
max_{k>=0} T(n,k) = A025591(n). - Alois P. Heinz, Jan 20 2023
Comments