cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053692 Number of self-conjugate 4-core partitions of n.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 2, 0, 1, 1, 1, 2, 0, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 2, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 3, 1, 0, 1, 0, 2, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 2, 2, 0, 1, 0, 0, 2, 1, 1, 1, 2, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 1, 2, 0
Offset: 0

Views

Author

James Sellers, Feb 14 2000

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also the number of positive odd solutions to equation x^2 + 4*y^2 = 8*n + 5. - Seiichi Manyama, May 28 2017

Examples

			G.f. = 1 + x + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^10 + x^12 + x^13 + x^14 + 2*x^15 + ...
G.f. = q^5 + q^13 + q^29 + q^37 + q^45 + q^53 + q^61 + 2*q^85 + q^101 + q^109 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part IV, Springer-Verlag, see p. 153 Entry 22.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(64), 1), 701); A[6] + A[14] + A[30] - A[35] + A[36]; /* Michael Somos, Jun 21 2015 */;
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x (1/2)] EllipticTheta[ 2, 0, x^2] / (4 x^(5/8)), {x, 0, n}]; (* Michael Somos, Jun 21 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ x^8]^2, {x, 0, n}]; (* Michael Somos, Jun 21 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^8]^2 QPochhammer[ x^2, x^4] / QPochhammer[ x, x^2], {x, 0, n}]; (* Michael Somos, Jun 21 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q^2]^2 - 2 EllipticTheta[ 2, Pi/4, q^2]^2) / 16, {q, 0, 8 n + 5}]; (* Michael Somos, Jun 21 2015 *)
    a[ n_] := If[ n < 0, 0, Sum[ (-1)^Quotient[d, 2], {d, Divisors[ 8 n + 5]}] / 2]; (* Michael Somos, Jun 21 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = sum( k=0, ceil( sqrtint(8*n + 1)/2), x^((k^2 + k)/2), x * O(x^n)); polcoeff( A * subst(A + x * O(x^(n\4)), x, x^4), n))}; /* Michael Somos, Nov 03 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^8 + A)^2 / (eta(x + A) * eta(x^4 + A)), n))}; /* Michael Somos, Apr 28 2003 */
    
  • PARI
    {a(n) = if( n<0, 0, sumdiv( 8*n + 5, d, (-1)^(d\2)) / 2)}; /* Michael Somos, Jun 21 2015*/
    

Formula

Expansion of psi(x) * psi(x^4) in powers of x where psi() is a Ramanujan theta function. - Michael Somos, Nov 03 2005
Expansion of chi(x) * f(-x^8)^2 in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Jul 24 2012
Expansion of f(x, x^7) * f(x^3, x^5) = f(x, x^3) * f(x^4, x^12) in powers of x where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 21 2015
Expansion of (psi(x)^2 - psi(-x)^2) / (4*x) in powers of x^2 where psi() is a Ramanujan theta function. - Michael Somos, Jun 21 2015
Expansion of q^(-5/8) * eta(q^2)^2 * eta(q^8)^2 / (eta(q) * eta(q^4)) in powers of q. - Michael Somos, Apr 28 2003
Euler transform of period 8 sequence [ 1, -1, 1, 0, 1, -1, 1, -2, ...]. - Michael Somos, Apr 28 2003
a(n) = 1/2 * b(8*n + 5), where b(n) is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Jul 24 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A246950.
G.f.: Sum_{k in Z} x^k / (1 - x^(8*k + 5)). - Michael Somos, Nov 03 2005
G.f.: Sum_{k>0} -(-1)^k * x^((k^2 + k)/2) / (1 - x^(2*k - 1)). - Michael Somos, Jun 21 2015
G.f.: Product_{i>=1} (1-x^(8*i))^2*(1-x^(4*i-2))/(1-x^(2*i-1)).
a(9*n + 2) = a(9*n + 8) = 0. a(9*n + 5) = a(n). 2 * a(n) = A008441(2*n + 1).