cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A008441 Number of ways of writing n as the sum of 2 triangular numbers.

Original entry on oeis.org

1, 2, 1, 2, 2, 0, 3, 2, 0, 2, 2, 2, 1, 2, 0, 2, 4, 0, 2, 0, 1, 4, 2, 0, 2, 2, 0, 2, 2, 2, 1, 4, 0, 0, 2, 0, 4, 2, 2, 2, 0, 0, 3, 2, 0, 2, 4, 0, 2, 2, 0, 4, 0, 0, 0, 4, 3, 2, 2, 0, 2, 2, 0, 0, 2, 2, 4, 2, 0, 2, 2, 0, 3, 2, 0, 0, 4, 0, 2, 2, 0, 6, 0, 2, 2, 0, 0, 2, 2, 0, 1, 4, 2, 2, 4, 0, 0, 2, 0, 2, 2, 2, 2, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). The present sequence gives the expansion coefficients of psi(q)^2.
Also the number of positive odd solutions to equation x^2 + y^2 = 8*n + 2. - Seiichi Manyama, May 28 2017

Examples

			G.f. = 1 + 2*x + x^2 + 2*x^3 + 2*x^4 + 3*x^6 + 2*x^7 + 2*x^9 + 2*x^10 + 2*x^11 + ...
G.f. for B(q) = q * A(q^4) = q + 2*q^5 + q^9 + 2*q^13 + 2*q^17 + 3*q^25 + 2*q^29 + 2*q^37 + 2*q^41 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag. See p. 139 Example (iv).
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
  • R. W. Gosper, Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics, in Computers in Mathematics (Ed. D. V. Chudnovsky and R. D. Jenks). New York: Dekker, 1990. See p. 279.
  • R. W. Gosper, Experiments and discoveries in q-trigonometry, in Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics. Editors: F. G. Garvan and M. E. H. Ismail. Kluwer, Dordrecht, Netherlands, 2001, pp. 79-105. [See Pi_q.]
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916. See vol. 2, p 31, Article 272.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991, p. 165.

Crossrefs

Cf. A004020, A005883, A104794, A052343, A199015 (partial sums).
Number of ways of writing n as a sum of k triangular numbers, for k=1,...: A010054, A008441, A008443, A008438, A008439, A008440, A226252, A007331, A226253, A226254, A226255, A014787, A014809.
Cf. A274621 (reciprocal series).

Programs

  • Haskell
    a052343 = (flip div 2) . (+ 1) . a008441
    -- Reinhard Zumkeller, Jul 25 2014
    
  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 420); A[2]; /* Michael Somos, Jan 31 2015 */
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A002654 := proc(n) sigmamr(n,4,1)-sigmamr(n,4,3) ; end proc:
    A008441 := proc(n) A002654(4*n+1) ; end proc:
    seq(A008441(n),n=0..90) ; # R. J. Mathar, Mar 23 2011
  • Mathematica
    Plus@@((-1)^(1/2 (Divisors[4#+1]-1)))& /@ Range[0, 104] (* Ant King, Dec 02 2010 *)
    a[ n_] := SeriesCoefficient[ (1/2) EllipticTheta[ 2, 0, q] EllipticTheta[ 3, 0, q], {q, 0, n + 1/4}]; (* Michael Somos, Jun 19 2012 *)
    a[ n_] := SeriesCoefficient[ (1/4) EllipticTheta[ 2, 0, q]^2, {q, 0, 2 n + 1/2}]; (* Michael Somos, Jun 19 2012 *)
    a[ n_] := If[ n < 0, 0, DivisorSum[ 4 n + 1, (-1)^Quotient[#, 2] &]];  (* Michael Somos, Jun 08 2014 *)
    QP = QPochhammer; s = QP[q^2]^4/QP[q]^2 + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
    TriangleQ[n_] := IntegerQ@Sqrt[8n +1]; Table[Count[FrobeniusSolve[{1, 1}, n], {?TriangleQ}], {n, 0, 104}] (* Robert G. Wilson v, Apr 15 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=0, (sqrtint(8*n + 1) - 1)\2, x^(k * (k+1)/2), x * O(x^n))^2, n) )};
    
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; sumdiv(n, d, (-1)^(d\2)))}; /* Michael Somos, Sep 02 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 / eta(x + A)^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, n = 4*n + 1; sumdiv( n, d, (d%4==1) - (d%4==3)))}; /* Michael Somos, Sep 14 2005 */
    
  • PARI
    { my(q='q+O('q^166)); Vec(eta(q^2)^4 / eta(q)^2) } \\ Joerg Arndt, Apr 16 2017
    
  • Sage
    ModularForms( Gamma1(8), 1, prec=420).1; # Michael Somos, Jun 08 2014
    

Formula

This sequence is the quadrisection of many sequences. Here are two examples:
a(n) = A002654(4n+1), the difference between the number of divisors of 4*n+1 of form 4*k+1 and the number of form 4*k-1. - David Broadhurst, Oct 20 2002
a(n) = b(4*n + 1), where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Sep 14 2005
G.f.: (Sum_{k>=0} x^((k^2 + k)/2))^2 = (Sum_{k>=0} x^(k^2 + k)) * (Sum_{k in Z} x^(k^2)).
Expansion of Jacobi theta (theta_2(0, sqrt(q)))^2 / (4 * q^(1/4)).
Sum[d|(4n+1), (-1)^((d-1)/2) ].
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v^3 + 4 * v * w^2 - u^2 * w. - Michael Somos, Sep 14 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1 * u3 - (u2 - u6) * (u2 + 3*u6). - Michael Somos, Sep 14 2005
Expansion of Jacobi k/(4*q^(1/2)) * (2/Pi)* K(k) in powers of q^2. - Michael Somos, Sep 14 2005. Convolution of A001938 and A004018. This appears in the denominator of the Jacobi sn and cn formula given in the Abramowitz-Stegun reference, p. 575, 16.23.1 and 16.23.2, where m=k^2. - Wolfdieter Lang, Jul 05 2016
G.f.: Sum_{k>=0} a(k) * x^(2*k) = Sum_{k>=0} x^k / (1 + x^(2*k + 1)).
G.f.: Sum_{k in Z} x^k / (1 - x^(4*k + 1)). - Michael Somos, Nov 03 2005
Expansion of psi(x)^2 = phi(x) * psi(x^2) in powers of x where phi(), psi() are Ramanujan theta functions.
Moebius transform is period 8 sequence [ 1, -1, -1, 0, 1, 1, -1, 0, ...]. - Michael Somos, Jan 25 2008
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 1/2 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A104794.
Euler transform of period 2 sequence [ 2, -2, ...].
G.f.: q^(-1/4) * eta(q^2)^4 / eta(q)^2. See also the Fine reference.
a(n) = Sum_{k=0..n} A010054(k)*A010054(n-k). - Reinhard Zumkeller, Nov 03 2009
A004020(n) = 2 * a(n). A005883(n) = 4 * a(n).
Convolution square of A010054.
G.f.: Product_{k>0} (1 - x^(2*k))^2 / (1 - x^(2*k-1))^2.
a(2*n) = A113407(n). a(2*n + 1) = A053692(n). a(3*n) = A002175(n). a(3*n + 1) = 2 * A121444(n). a(9*n + 2) = a(n). a(9*n + 5) = a(9*n + 8) = 0. - Michael Somos, Jun 08 2014
G.f.: exp( Sum_{n>=1} 2*(x^n/n) / (1 + x^n) ). - Paul D. Hanna, Mar 01 2016
a(n) = A001826(2+8*n) - A001842(2+8*n), the difference between the number of divisors 1 (mod 4) and 3 (mod 4) of 2+8*n. See the Ono et al. link, Corollary 1, or directly the Niven et al. reference, p. 165, Corollary (3.23). - Wolfdieter Lang, Jan 11 2017
Expansion of continued fraction 1 / (1 - x^1 + x^1*(1 - x^1)^2 / (1 - x^3 + x^2*(1 - x^2)^2 / (1 - x^5 + x^3*(1 - x^3)^2 / ...))) in powers of x^2. - Michael Somos, Apr 20 2017
Given g.f. A(x), and B(x) is the g.f. for A079006, then B(x) = A(x^2) / A(x) and B(x) * B(x^2) * B(x^4) * ... = 1 / A(x). - Michael Somos, Apr 20 2017
a(0) = 1, a(n) = (2/n)*Sum_{k=1..n} A002129(k)*a(n-k) for n > 0. - Seiichi Manyama, May 06 2017
From Paul D. Hanna, Aug 10 2019: (Start)
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(2*n+1) - x^(2*k))^(n-k) = Sum_{n>=0} a(n)*x^(2*n).
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * (x^(2*n+1) + x^(2*k))^(n-k) * (-1)^k = Sum_{n>=0} a(n)*x^(2*n). (End)
From Peter Bala, Jan 05 2021: (Start)
G.f.: Sum_{n = -oo..oo} x^(4*n^2+2*n) * (1 + x^(4*n+1))/(1 - x^(4*n+1)). See Agarwal, p. 285, equation 6.20 with i = j = 1 and mu = 4.
For prime p of the form 4*k + 3, a(n*p^2 + (p^2 - 1)/4) = a(n).
If n > 0 and p are coprime then a(n*p + (p^2 - 1)/4) = 0. The proofs are similar to those given for the corresponding results for A115110. Cf. A000729.
For prime p of the form 4*k + 1 and for n not congruent to (p - 1)/4 (mod p) we have a(n*p^2 + (p^2 - 1)/4) = 3*a(n) (since b(n), where b(4*n+1) = a(n), is multiplicative). (End)
From Peter Bala, Mar 22 2021: (Start)
G.f. A(q) satisfies:
A(q^2) = Sum_{n = -oo..oo} q^n/(1 - q^(4*n+2)) (set z = q, alpha = q^2, mu = 4 in Agarwal, equation 6.15).
A(q^2) = Sum_{n = -oo..oo} q^(2*n)/(1 - q^(4*n+1)) (set z = q^2, alpha = q, mu = 4 in Agarwal, equation 6.15).
A(q^2) = Sum_{n = -oo..oo} q^n/(1 + q^(2*n+1))^2 = Sum_{n = -oo..oo} q^(3*n+1)/(1 + q^(2*n+1))^2. (End)
G.f.: Sum_{k>=0} a(k) * q^k = Sum_{k>=0} (-1)^k * q^(k*(k+1)) + 2 * Sum_{n>=1, k>=0} (-1)^k * q^(k*(k+2*n+1)+n). - Mamuka Jibladze, May 17 2021
G.f.: Sum_{k>=0} a(k) * q^k = Sum_{k>=0} (-1)^k * q^(k*(k+1)) * (1 + q^(2*k+1))/(1 - q^(2*k+1)). - Mamuka Jibladze, Jun 06 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Oct 15 2022

Extensions

More terms and information from Michael Somos, Mar 23 2003

A052343 Number of ways to write n as the unordered sum of two triangular numbers (zero allowed).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 0, 0, 1, 0, 2, 1, 1, 1, 0, 0, 2, 1, 0, 1, 2, 0, 1, 1, 0, 2, 0, 0, 0, 2, 2, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 2, 1, 0, 0, 2, 0, 1, 1, 0, 3, 0, 1, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1
Offset: 0

Views

Author

Christian G. Bower, Jan 23 2000

Keywords

Comments

Number of ways of writing n as a sum of a square and twice a triangular number (zeros allowed). - Michael Somos, Aug 18 2003
a(A020757(n))=0; a(A020756(n))>0; a(A119345(n))=1; a(A118139(n))>1. - Reinhard Zumkeller, May 15 2006
Also, number of ways to write 4n+1 as the unordered sum of two squares of nonnegative integers. - Vladimir Shevelev, Jan 21 2009
The average value of a(n) for n <= x is Pi/4 + O(1/sqrt(x)). - Vladimir Shevelev, Feb 06 2009

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^6 + x^7 + x^9 + x^10 + x^11 + ...
		

Crossrefs

Programs

  • Haskell
    a052343 = (flip div 2) . (+ 1) . a008441
    -- Reinhard Zumkeller, Jul 25 2014
  • Maple
    A052343 := proc(n)
        local a,t1idx,t2idx,t1,t2;
        a := 0 ;
        for t1idx from 0 do
            t1 := A000217(t1idx) ;
            if t1 > n then
                break;
            end if;
            for t2idx from t1idx do
                t2 := A000217(t2idx) ;
                if t1+t2 > n then
                    break;
                elif t1+t2 = n then
                    a := a+1 ;
                end if;
            end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Apr 28 2020
  • Mathematica
    Length[PowersRepresentations[4 # + 1, 2, 2]] & /@ Range[0, 101] (* Ant King, Dec 01 2010 *)
    d1[k_]:=Length[Select[Divisors[k],Mod[#,4]==1&]];d3[k_]:=Length[Select[Divisors[k],Mod[#,4]==3&]];f[k_]:=d1[k]-d3[k];g[k_]:=If[IntegerQ[Sqrt[4k+1]],1/2 (f[4k+1]+1),1/2 f[4k+1]];g[#]&/@Range[0,101] (* Ant King, Dec 01 2010 *)
    a[ n_] := Length @ Select[ Table[ Sqrt[n - i - i^2], {i, 0, Quotient[ Sqrt[4 n + 1] - 1, 2]}], IntegerQ]; (* Michael Somos, Jul 28 2015 *)
    a[ n_] := Length @ FindInstance[ {j >= 0, k >= 0, j^2 + k^2 + k == n}, {k, j}, Integers, 10^9]; (* Michael Somos, Jul 28 2015 *)
  • PARI
    {a(n) = if( n<0, 0, sum(i=0, (sqrtint(4*n + 1) - 1)\2, issquare(n - i - i^2)))}; /* Michael Somos, Aug 18 2003 */
    

Formula

a(n) = ceiling(A008441(n)/2). - Reinhard Zumkeller, Nov 03 2009
G.f.: (Sum_{k>=0} x^(k^2 + k)) * (Sum_{k>=0} x^(k^2)). - Michael Somos, Aug 18 2003
Recurrence: a(n) = Sum_{k=1..r(n)} r(2n-k^2+k) - C(r(n),2) - a(n-1) - a(n-2) - ... - a(0), n>=1,a (0)=1, where r(n)=A000194(n+1) is the nearest integer to square root of n+1. For example, since r(6)=3, a(6) = r(12) + r(10) + r(6) - C(3,2) - a(5) - ... - a(0) = 4 + 3 + 3 - 3 - 0 - 1 - 1 - 1 - 1 - 1 = 2. - Vladimir Shevelev, Feb 06 2009
a(n) = A025426(8n+2). - Max Alekseyev, Mar 09 2009
a(n) = (A002654(4n+1) + A010052(4n+1)) / 2. - Ant King, Dec 01 2010
a(2*n + 1) = A053692(n). a(4*n + 1) = A259287(n). a(4*n + 3) = A259285(n). a(6*n + 1) = A260415(n). a(6*n + 4) = A260516(n). - Michael Somos, Jul 28 2015
a(3*n) = A093518(n). a(3*n + 1) = A121444(n). a(9*n + 2) = a(n). a(9*n + 5) = a(9*n + 8) = 0. - Michael Somos, Jul 28 2015
Convolution of A005369 and A010052. - Michael Somos, Jul 28 2015

A113407 Expansion of psi(x) * phi(x^2) in powers of x where psi(), phi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 2, 3, 0, 2, 1, 0, 4, 2, 1, 2, 2, 0, 2, 1, 0, 2, 4, 2, 0, 3, 0, 4, 2, 0, 0, 0, 3, 2, 2, 0, 2, 4, 0, 2, 3, 0, 4, 2, 0, 0, 2, 0, 2, 1, 2, 4, 0, 0, 2, 2, 0, 6, 2, 1, 2, 2, 0, 0, 4, 0, 0, 4, 0, 2, 1, 0, 4, 0, 0, 2, 2, 4, 2, 2, 0, 2, 5, 0, 2, 0, 2, 0, 2, 0, 4, 4, 0, 0, 0, 1, 0, 4, 0, 2, 2, 0, 4, 4, 2, 2, 0, 0, 2
Offset: 0

Views

Author

Michael Somos, Oct 28 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Bisection of A008441. Number of ways to write n as two times a square plus a triangular number [Hirschhorn]. - R. J. Mathar, Mar 23 2011

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 2*x^5 + x^6 + 4*x^8 + 2*x^9 + x^10 + 2*x^11 + ...
G.f. = q + q^9 + 2*q^17 + 3*q^25 + 2*q^41 + q^49 + 4*q^65 + 2*q^73 + q^81 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 114 Entry 8(vi).

Crossrefs

Programs

  • Mathematica
    phi[x_] := EllipticTheta[3, 0, x]; psi[x_] := (1/2)*x^(-1/8)*EllipticTheta[2, 0, x^(1/2)]; s = Series[psi[x]*phi[x^2], {x, 0, 104}]; a[n_] := Coefficient[s, x, n] ; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Feb 17 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^5 / (eta(x + A) * eta(x^8 + A)^2), n))};

Formula

Expansion of chi(x) * f(x)^2 in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Jul 24 2012
Expansion of q^(-1/8) * eta(q^4)^5 / (eta(q) * eta(q^8)^2) in powers of q.
Euler transform of period 8 sequence [ 1, 1, 1, -4, 1, 1, 1, -2, ...].
a(n) = b(8*n + 1), where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 +(-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 4). - Michael Somos, Jul 24 2012
G.f.: (Sum_{k in Z} x^(2*k^2)) * (Sum_{k>=0} x^((k^2 + k)/2)) = Sum_{k>=0} (-1)^k * (x^(2*k + 1) + 1) / (x^(2*k + 1) - 1) * x^((k^2 + k)/2).
a(9*n + 4) = a(9*n + 7) = 0. a(9*n + 1) = a(n). a(n) = A008441(2*n). - Michael Somos, Jul 24 2012

A104794 Expansion of theta_4(q)^2 in powers of q.

Original entry on oeis.org

1, -4, 4, 0, 4, -8, 0, 0, 4, -4, 8, 0, 0, -8, 0, 0, 4, -8, 4, 0, 8, 0, 0, 0, 0, -12, 8, 0, 0, -8, 0, 0, 4, 0, 8, 0, 4, -8, 0, 0, 8, -8, 0, 0, 0, -8, 0, 0, 0, -4, 12, 0, 8, -8, 0, 0, 0, 0, 8, 0, 0, -8, 0, 0, 4, -16, 0, 0, 8, 0, 0, 0, 4, -8, 8, 0, 0, 0, 0, 0, 8
Offset: 0

Views

Author

Michael Somos, Mar 26 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Quadratic AGM theta functions: a(q) (see A004018), b(q) (A104794), c(q) (A005883).
In the Arithmetic-Geometric Mean, if a = theta_3(q)^2, b = theta_4(q)^2 then a' := (a+b)/2 = theta_3(q^2)^2, b' := sqrt(a*b) = theta_4(q^2)^2.

Examples

			G.f. = 1 - 4*q + 4*q^2 + 4*q^4 - 8*q^5 + 4*q^8 - 4*q^9 + 8*q^10 - 8*q^13 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 576.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987.

Crossrefs

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A104794List(len) = JacobiTheta4(len, 2)
    A104794List(102) |> println # Peter Luschny, Mar 12 2018
  • Magma
    A := Basis( ModularForms( Gamma1(8), 1), 100); A[1] - 4*A[2] + 4*A[3]; /* Michael Somos, Jan 31 2015 */
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q]^2, {q, 0, n}];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[1 - m] EllipticK[m] / (Pi/2), {q, 0, n}]];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m)^(1/4) EllipticK[m] / (Pi/2), {q, 0, 2 n}]];
    a[ n_] := With[ {m = InverseEllipticNomeQ @ -q}, SeriesCoefficient[ EllipticK[ m] / (Pi/2), {q, 0, n}]]; (* Michael Somos, Jun 06 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], (-1)^n 4 DivisorSum[ n, KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Jun 06 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, (-1)^n * 4 * sumdiv(n, d, (d%4==1) - (d%4==3)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 / eta(x^2 + A)^2, n ))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 + 4 * sum( k=1, n, (-x)^k / (1 + x^(2*k)), x * O(x^n)), n))};
    

Formula

Expansion of phi(-q)^2 = 2 * phi(q^2)^2 - phi(q)^2 = (phi(q) - 2*phi(q^4))^2 = f(-q)^3 / psi(q) = phi(-q^2)^4 / phi(q)^2 = psi(-q)^4 / psi(q^2)^2 = psi(q)^2 * chi(-q)^6 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (1-k^2)^(1/2) K(k^2) / (Pi/2) in powers of q where q is Jacobi's nome, k is the elliptic modulus and K() is the complete elliptic integral of the first kind.
Expansion of K(k^2) / (Pi/2) in powers of -q where q is Jacobi's nome, k is the elliptic modulus and K() is the complete elliptic integral of the first kind. - Michael Somos, Jun 08 2015
Expansion of eta(q)^4 / eta(q^2)^2 in powers of q.
Euler transform of period 2 sequence [ -4, -2, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v * (u^2 + v^2) - 2*u*w^2.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1^2 - 2*u1*u3 + 4*u2*u6 - 3*u3^2.
Moebius transform is period 8 sequence [ -4, 8, 4, 0, -4, -8, 4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 16 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A008441.
G.f.: theta_4(q)^2 = (Sum_{k in Z} (-q)^(k^2))^2 = (Product_{k>0} (1 - q^(2*k)) * (1 - q^(2*k - 1))^2)^2.
G.f.: 1 + 4 * Sum_{k>0} (-x)^k / (1 + x^(2*k)). - Michael Somos, Jun 08 2015
a(4*n + 3) = 0. a(n) = (-1)^n * A004018(n) = a(2*n). a(4*n + 1) = -4 * A008441(n). a(n) = -4 * A113652(n) unless n=0. a(6*n + 2) = 4 * A122865(n). a(6*n + 4) = 4 * A122856(n). a(8*n + 1) = -4 * A113407(n). a(8*n + 5) = -8 * A053692(n).
a(n) = a(9*n) = A204531(8*n) = A246950(8*n) = A256014(9*n) = A258210(n). - Michael Somos, Jun 08 2015
Convolution inverse of A001934. Convolution with A000729 is A227695. - Michael Somos, Jun 08 2015
G.f.: 2 * Sum_{k in Z} (-1)^k * x^(k*(k + 1)/2) / (1 + x^k). - Michael Somos, Nov 05 2015
a(0) = 1, a(n) = -(4/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0. - Seiichi Manyama, May 02 2017
G.f.: exp(2*Sum_{k>=1} (sigma(k) - sigma(2*k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018

A134343 Expansion of psi(-x)^2 in powers of x where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 1, -2, 2, 0, 3, -2, 0, -2, 2, -2, 1, -2, 0, -2, 4, 0, 2, 0, 1, -4, 2, 0, 2, -2, 0, -2, 2, -2, 1, -4, 0, 0, 2, 0, 4, -2, 2, -2, 0, 0, 3, -2, 0, -2, 4, 0, 2, -2, 0, -4, 0, 0, 0, -4, 3, -2, 2, 0, 2, -2, 0, 0, 2, -2, 4, -2, 0, -2, 2, 0, 3, -2, 0, 0, 4, 0, 2
Offset: 0

Views

Author

Michael Somos, Oct 21 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 57 of the 74 eta-quotients listed in Table I of Martin (1996).

Examples

			G.f. = 1 - 2*x + x^2 - 2*x^3 + 2*x^4 + 3*x^6 - 2*x^7 - 2*x^9 + 2*x^10 + ...
G.f. = q - 2*q^5 + q^9 - 2*q^13 + 2*q^17 + 3*q^25 - 2*q^29 - 2*q^37 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(64), 1), 321); A[2] - 2*A[6] + A[10] - 2*A[14] + 2*A[18] + 3*A[26] - 2*A[30] + 2*A[35] - 2*A[36]; /* Michael Somos, Jun 22 2015 */;
  • Mathematica
    a[ n_] := If[ n < 0, 0, (-1)^n DivisorSum[ 4 n + 1, (-1)^Quotient[#, 2] &]]; (* Michael Somos, Jun 22 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, x^(1/2)]^2 / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, Jun 22 2015 *)
    a[ n_] := SeriesCoefficient[(QPochhammer[ x] QPochhammer[ x^4] / QPochhammer[ x^2])^2, {x, 0, n}]; (* Michael Somos, Jun 22 2015 *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * sumdiv( 4*n + 1, d, (-1)^(d\2)))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A) * eta(x^4 + A) / eta(x^2 + A) )^2, n))};
    

Formula

Expansion of q^(-1/4) * (eta(q) * eta(q^4) / eta(q^2))^2 in powers of q.
Euler transform of period 4 sequence [ -2, 0, -2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 8 (t/i) f(t) where q = exp(2 Pi i t).
a(n) = b(4*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4), b(p^e) = e+1 if p == 1 (mod 8), b(p^e) = (-1)^e * (e+1) if p == 5 (mod 8).
G.f.: (Product_{k>0} (1 - x^k) * (1 + x^(2*k)))^2.
a(9*n + 5) = a(9*n + 8) = 0. a(n) = (-1)^n * A008441(n). a(2*n) = A113407(n). a(2*n + 1) = -2 * A053692(n).
2 * a(n) = A204531(4*n + 1) = - A246950(n). a(4*n) = A246862(n). a(4*n + 2) = A246683(n). - Michael Somos, Jun 22 2015
a(4*n + 1) = -2 * A259287(n). a(4*n + 3) = -2 * A259285(n). - Michael Somos, Jun 24 2015
Convolution square is A121613. Convolution cube is A213791. Convolution with A000009 is A143379. Convolution with A000143 is A209942. Michael Somos, Jun 22 2015
G.f.: Sum_{k>0 odd} (x^k + x^(3*k)) / (1 + x^(4*k)) * (-1)^floor((k+1) / 4). - Michael Somos, Jun 22 2015
G.f.: Sum_{k>0 odd} (x^k - x^(3*k)) / (1 + x^(4*k)) * (-1)^floor(k / 4). - Michael Somos, Jun 22 2015

A125061 Expansion of psi(q) * psi(q^2) * chi(q^3) * chi(-q^6) in powers of q where psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 1, 3, 1, 2, 3, 0, 1, 1, 2, 0, 3, 2, 0, 6, 1, 2, 1, 0, 2, 0, 0, 0, 3, 3, 2, 3, 0, 2, 6, 0, 1, 0, 2, 0, 1, 2, 0, 6, 2, 2, 0, 0, 0, 2, 0, 0, 3, 1, 3, 6, 2, 2, 3, 0, 0, 0, 2, 0, 6, 2, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 1, 2, 2, 9, 0, 0, 6, 0, 2, 1, 2, 0, 0, 4, 0, 6, 0, 2, 2, 0, 0, 0, 0, 0, 3, 2, 1, 0, 3, 2, 6, 0, 2
Offset: 0

Views

Author

Michael Somos, Nov 18 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + q + q^2 + 3*q^3 + q^4 + 2*q^5 + 3*q^6 + q^8 + q^9 + 2*q^10 + 3*q^12 + ...
		

References

  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 82, Eq. (32.53).

Crossrefs

Programs

  • Mathematica
    s = (EllipticTheta[3, 0, q]^2 + 3*EllipticTheta[3, 0, q^3]^2)/4 + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 07 2015, from 2nd formula *)
  • PARI
    {a(n) = if( n<1, n==0, sumdiv(n, d, ((d%2) * ((d%3==0)+1)) * (-1)^(d\6)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1],
         [p, e] = A[k, ]; if( p==2, 1, p==3, 1+e%2*2, p%4==1, e+1, !(e%2) )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 * eta(x^6 + A)^3 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)^2), n))};

Formula

Expansion of eta(q^2) * eta(q^4)^2 * eta(q^6)^3 / (eta(q) * eta(q^3) * eta(q^12)^2) in powers of q.
Expansion of (theta_3(q)^2 + 3*theta_3(q^3)^2) / 4 in powers of q.
Euler transform of period 12 sequence [ 1, 0, 2, -2, 1, -2, 1, -2, 2, 0, 1, -2, ...].
Moebius transform is period 12 sequence [ 1, 0, 2, 0, 1, 0, -1, 0, -2, 0, -1, 0, ...].
a(n) is multiplicative with a(2^e) = 1, a(3^e) = 2-(-1)^e, a(p^e) = e+1 if p == 1 (mod 4), a(p^e) == (1-(-1)^e)/2 if p == 3 (mod 4).
G.f.: 1 + Sum_{k>0} (x^k + x^(3*k)) / (1 - x^(2*k) + x^(4*k)).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 3 (t/i) g(t) where q = exp(2 Pi i t) and g() is g.f. for A122857.
a(12*n + 7) = a(12*n + 11) = 0. a(2*n) = a(n). a(2*n + 1) = A138741(n). a(3*n + 1) = A122865(n). a(3*n + 2) = A122856(n). a(4*n + 1) = A008441(n). a(4*n + 3) = 3 * A008441(n). a(6*n + 1) = A002175(n). a(6*n + 5) = 2 * A121444(n). a(8*n + 1) = A113407(n). a(8*n + 3) = 3 * A113407(n). a(8*n + 5) = 2 * A053692(n). a(8*n + 7) = 6 * A053692(n). a(9*n) = A125061(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 (A019669). - Amiram Eldar, Nov 24 2023

A113652 Expansion of (1 - theta_4(q)^2) / 4 in powers of q.

Original entry on oeis.org

1, -1, 0, -1, 2, 0, 0, -1, 1, -2, 0, 0, 2, 0, 0, -1, 2, -1, 0, -2, 0, 0, 0, 0, 3, -2, 0, 0, 2, 0, 0, -1, 0, -2, 0, -1, 2, 0, 0, -2, 2, 0, 0, 0, 2, 0, 0, 0, 1, -3, 0, -2, 2, 0, 0, 0, 0, -2, 0, 0, 2, 0, 0, -1, 4, 0, 0, -2, 0, 0, 0, -1, 2, -2, 0, 0, 0, 0, 0, -2, 1, -2, 0, 0, 4, 0, 0, 0, 2, -2, 0, 0, 0, 0, 0, 0, 2, -1, 0, -3, 2, 0, 0, -2, 0
Offset: 1

Views

Author

Michael Somos, Nov 03 2005

Keywords

Examples

			G.f. = x - x^2 - x^4 + 2*x^5 - x^8 + x^9 - 2*x^10 + 2*x^13 - x^16 + 2*x^17 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 114 Entry 8(v).
  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 576.
  • J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987.
  • P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 28, Article 269.

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, -(-1)^n DivisorSum[ n, KroneckerSymbol[ -4, #] &]]; (* Michael Somos, Jun 06 2015 *)
    a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[4, 0, q]^2) / 4, {q, 0, n}]; (* Michael Somos, Jun 06 2015 *)
    a[ n_] := With[ {m = InverseEllipticNomeQ @ -q}, SeriesCoefficient[(1 - EllipticK[m] / (Pi/2)) / 4, {q, 0, n}]]; (* Michael Somos, Jun 06 2015 *)
  • PARI
    {a(n) = if( n<1, 0, -(-1)^n * sumdiv(n, d, kronecker( -4, d)))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, -1, p%4==1, e+1, !(e%2))))};
    
  • PARI
    {a(n) = if( n<1, 0, direuler(p=2, n, if( p==2, 1 - X/(1 - X), 1 / ((1 - X) * (1 - kronecker( -4, p)*X))) )[n])};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^4 / eta(x^2 + A)^2) / 4, n))};

Formula

a(n) is multiplicative with a(2^e) = -1 if e>0, a(p^e) = e+1 if p == 1 (mod 4), (1 + (-1)^e)/2 if p == 3 (mod 4).
Expansion of (1 - eta(q)^4 / eta(q^2)^2) / 4 in powers of q.
Moebius transform is period 8 sequence [ 1, -2, -1, 0, 1, 2, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u2 - 2*u3 + u6 - u1^2 + 3*u3^2 + 2*u1*u3 - 4*u2*u6.
G.f.: Sum_{k>0} -(-1)^k * x^((k^2 + k)/2) / (1 + x^k).
G.f.: Sum_{k>0} -(-1)^k * x^k / (1 + x^(2*k)).
G.f.: Sum_{k>0} -(-1)^k * x^(2*k - 1) / (1 + x^(2*k - 1)).
a(n) = -(-1)^n * A002654(n). a(n) = - A104794(n) / 4 unless n = 0.
a(2*n) = - A002654(n). a(3*n + 1) = A258277(n). a(3*n + 2) = - A258278(n). a(4*n + 1) = A008441(n). a(4*n + 3) = 0. a(6*n + 2) = - A122856(n). a(6*n + 4 ) = - A122856(n). - Michael Somos, Jun 06 2015
a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). a(9*n + 3) = a(9*n + 6) = 0. - Michael Somos, Jun 06 2015

A035184 a(n) = Sum_{d|n} Kronecker(-1, d).

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 0, 4, 1, 4, 0, 0, 2, 0, 0, 5, 2, 2, 0, 6, 0, 0, 0, 0, 3, 4, 0, 0, 2, 0, 0, 6, 0, 4, 0, 3, 2, 0, 0, 8, 2, 0, 0, 0, 2, 0, 0, 0, 1, 6, 0, 6, 2, 0, 0, 0, 0, 4, 0, 0, 2, 0, 0, 7, 4, 0, 0, 6, 0, 0, 0, 4, 2, 4, 0, 0, 0, 0, 0, 10, 1, 4, 0, 0, 4, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 2, 2, 0, 9, 2, 0, 0, 8, 0
Offset: 1

Views

Author

Keywords

Examples

			G.f. = x + 2*x^2 + 3*x^4 + 2*x^5 + 4*x^8 + x^9 + 4*x^10 + 2*x^13 + 5*x^16 + 2*x^17 + ...
		

Crossrefs

Inverse Moebius transform of A034947.
Sum_{d|n} Kronecker(k, d): A035143..A035181 (k=-47..-9, skipping numbers that are not cubefree), A035182 (k=-7), A192013 (k=-6), A035183 (k=-5), A002654 (k=-4), A002324 (k=-3), A002325 (k=-2), this sequence (k=-1), A000012 (k=0), A000005 (k=1), A035185 (k=2), A035186 (k=3), A001227 (k=4), A035187..A035229 (k=5..47, skipping numbers that are not cubefree).

Programs

  • Mathematica
    a[n_] := DivisorSum[n, KroneckerSymbol[-1, #] &]; Array[a, 105] (* Jean-François Alcover, Dec 02 2015 *)
  • PARI
    {a(n) = if( n<1, 0, direuler( p=2, n, 1/((1 - X) * (1 - kronecker( -1, p) * X))) [n])}; /* Michael Somos, Jan 05 2012 */
    
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, kronecker( -1, d)))}; /* Michael Somos, Jan 05 2012 */

Formula

a(n) is multiplicative with a(2^e) = e + 1, a(p^e) = e + 1 if p == 1 (mod 4), a(p^e) = (1 + (-1)^e) / 2 if p == 3 (mod 4). - Michael Somos, Jan 05 2012
a(4*n + 3) = a(9*n + 3) = a(9*n + 6) = 0. a(4*n + 1) = A008441(n). a(8*n + 1) = A113407(n). a(8*n + 5) = 2 * A053692(n). a(12*n + 1) = A002175(n). a(12*n + 5) = 2 * A121444(n).
Dirichlet g.f.: zeta(s)*beta(s)/(1 - 2^(-s)), where beta is the Dirichlet beta function. - Ralf Stephan, Mar 27 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/2 = 1.570796... (A019669). - Amiram Eldar, Oct 17 2022

A204531 Expansion of phi(q) * phi(-q^4) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 0, 0, 0, -4, 0, 0, -4, 2, 0, 0, 0, -4, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, -4, 0, 0, 4, 0, 0, 0, 0, -4, 0, 0, -8, 4, 0, 0, 0, -4, 0, 0, 0, 2, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, -4, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, -4, 4, 0, 0, 0, 0, 0, 0, 8, 2, 0, 0, 0, -8, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0
Offset: 0

Views

Author

Michael Somos, Jan 15 2012

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q - 4*q^5 - 4*q^8 + 2*q^9 - 4*q^13 + 4*q^16 + 4*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 4, 0, q^4], {q, 0, n}]; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A)^2 * eta(x^8 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 2 * (-1)^(n%8==5) * prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 2 * (e>2) * (-1)^(e<4), p%4==1, e+1, !(e%2))))};

Formula

Expansion of eta(q^2)^5 / (eta(q)^2 * eta(q^8)) in powers of q.
Euler transform of period 8 sequence [ 2, -3, 2, -3, 2, -3, 2, -2, ...].
G.f.: Product_{k>0} (1 - x^(2*k))^5 / ((1 - x^k)^2 * (1 - x^(8*k))).
a(4*n + 2) = a(4*n + 3) = a(8*n + 4) = 0. a(8*n) = A104794(n). a(4*n + 1) = 2 * A134343(n).
a(n) = (-1)^n * A246950(n). a(8*n + 1) = 2 * A113407(n). a(8*n + 5) = -4 * A053692(n). - Michael Somos, Jun 10 2015

A246950 Expansion of phi(-q) * phi(-q^4) in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, 0, 0, 4, 0, 0, -4, -2, 0, 0, 0, 4, 0, 0, 4, -4, 0, 0, 0, 0, 0, 0, 0, -6, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, -8, -4, 0, 0, 0, 4, 0, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, -8, 0, 0, 0, 0, 0, 0, -4, -4, 0, 0, 0, 0, 0, 0, 8, -2, 0
Offset: 0

Views

Author

Michael Somos, Sep 08 2014

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*q + 4*q^5 - 4*q^8 - 2*q^9 + 4*q^13 + 4*q^16 - 4*q^17 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(64), 1), 85); A[1] - 2*A[2] + 4*A[6] - 4*A[9] - 2*A[10] + 4*A[14] + 4*A[17] - 4*A[18] - 6*A[26] + 4*A[30] - 4*A[35] + 4*A[36]; /* Michael Somos, Jun 21 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^4], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A)^2 / (eta(x^2 + A) * eta(x^8 + A)), n))};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 2 * (-1)^(n%8==1) * prod( k=1, matsize(A)[1], [p, e] = A[k,]; if( p==2, 2 * (e>2) * (-1)^(e<4), p%4==1, (e+1), !(e%2))))};
    

Formula

Expansion of f(-q, -q) * f(q, -q) in powers of q where f(,) is the Ramanujan general theta function. - Michael Somos, Jun 21 2015
Expansion of eta(q)^2 * eta(q^4)^2 / (eta(q^2) * eta(q^8)) in powers of q.
Euler transform of period 8 sequence [ -2, -1, -2, -3, -2, -1, -2, -2, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = 64 (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A053692.
G.f.: Product_{k>0} (1 - x^k)^2 * (1 + x^(2*k)) / (1 + x^(4*k)).
a(n) = (-1)^n * A204531(n). a(4*n + 2) = a(4*n + 3) = a(8*n + 4) = 0.
a(8*n) = A104794(n). a(4*n + 1) = - 2 * A134343(n).
a(8*n + 1) = -2 * A113407(n). a(8*n + 5) = 4 * A053692(n). - Michael Somos, Jun 10 2015
Showing 1-10 of 20 results. Next