A053799 Number of basis partitions of n+9 with Durfee square size 3.
1, 2, 4, 8, 12, 18, 26, 34, 44, 56, 68, 82, 98, 114, 132, 152, 172, 194, 218, 242, 268, 296, 324, 354, 386, 418, 452, 488, 524, 562, 602, 642, 684, 728, 772, 818, 866, 914, 964, 1016, 1068, 1122, 1178, 1234, 1292, 1352, 1412, 1474, 1538, 1602, 1668, 1736
Offset: 0
Examples
G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 12*x^4 + 18*x^5 + 26*x^6 + 34*x^7 + ... - _Michael Somos_, Jul 17 2018
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- M. D. Hirschhorn, Basis partitions and Rogers-Ramanujan partitions, Discrete Math. 205 (1999), 241-243.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
Programs
-
Mathematica
LinearRecurrence[{2,-1,1,-2,1},{1,2,4,8,12,18},60] (* Harvey P. Dale, Aug 25 2015 *) a[ n_] := 2 Quotient[ n^2, 3] + 2 - Boole[n == 0]; (* Michael Somos, Jul 17 2018 *) a[ n_] := SeriesCoefficient[ (1 + x^2) (1 + x^3) / ((1 - x)^3 (1 + x + x^2)), {x, 0, Abs@n}]; (* Michael Somos, Jul 17 2018 *) a[ n_] := Length @ FindInstance[ Abs[x] + 2 Abs[y] + 3 Abs[z] == Abs[n], {x, y, z}, Integers, 10^9]; (* Michael Somos, Jul 17 2018 *)
-
PARI
{a(n) = n^2 \ 3 * 2 + 2 - (n==0)}; /* Michael Somos, Jul 17 2018 */
Formula
For n>0, a(n) = 2*(1+floor(n^2/3)) = 2*A087483(n-1) = 2*(1+A000212(n)). - Max Alekseyev, Dec 05 2013
G.f.: (1+x)*(1+x^2)*(1+x^3)/((1-x)*(1-x^2)*(1-x^3)) = (1+x)*(1+x^2)*(1-x+x^2)/((1-x)^3*(1+x+x^2)).
From Michael Somos, Jul 17 2018: (Start)
Euler transform of length 6 sequence [2, 1, 2, -1, 0, -1].
a(n+1) - 2*a(n) + a(n-1) = 1 + (-1)^n if |n|>1.
a(n) = a(-n) for all n in Z. (End)
Comments