A344229
a(n) = n*a(n-1) + n^signum(n mod 4), a(0) = 1.
Original entry on oeis.org
1, 2, 6, 21, 85, 430, 2586, 18109, 144873, 1303866, 13038670, 143425381, 1721104573, 22374359462, 313241032482, 4698615487245, 75177847795921, 1278023412530674, 23004421425552150, 437084007085490869, 8741680141709817381, 183575282975906165022
Offset: 0
A368759
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * (1 + Sum_{j=0..n} j^k/j!).
Original entry on oeis.org
2, 1, 3, 1, 2, 7, 1, 2, 6, 22, 1, 2, 8, 21, 89, 1, 2, 12, 33, 88, 446, 1, 2, 20, 63, 148, 445, 2677, 1, 2, 36, 141, 316, 765, 2676, 18740, 1, 2, 68, 351, 820, 1705, 4626, 18739, 149921, 1, 2, 132, 933, 2428, 4725, 10446, 32431, 149920, 1349290, 1, 2, 260, 2583, 7828, 15265, 29646, 73465, 259512, 1349289, 13492901
Offset: 0
Square array begins:
2, 1, 1, 1, 1, 1, 1, ...
3, 2, 2, 2, 2, 2, 2, ...
7, 6, 8, 12, 20, 36, 68, ...
22, 21, 33, 63, 141, 351, 933, ...
89, 88, 148, 316, 820, 2428, 7828, ...
446, 445, 765, 1705, 4725, 15265, 54765, ...
2677, 2676, 4626, 10446, 29646, 99366, 375246, ...
A348311
a(n) = n! * Sum_{k=1..n} (-1)^k * (k-2) / (k-1)!.
Original entry on oeis.org
0, 1, 2, 3, 20, 85, 534, 3703, 29672, 266985, 2669930, 29369131, 352429692, 4581585853, 64142202110, 962133031455, 15394128503504, 261700184559313, 4710603322067922, 89501463119290195, 1790029262385804260, 37590614510101889061, 826993519222241559782
Offset: 0
-
Table[n! Sum[(-1)^k (k - 2)/(k - 1)!, {k, 1, n}], {n, 0, 22}]
nmax = 22; CoefficientList[Series[x (1 + x) Exp[-x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
-
a(n) = n!*sum(k=1, n, (-1)^k * (k-2) / (k-1)!); \\ Michel Marcus, Oct 20 2021
Showing 1-3 of 3 results.
Comments