cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344229 a(n) = n*a(n-1) + n^signum(n mod 4), a(0) = 1.

Original entry on oeis.org

1, 2, 6, 21, 85, 430, 2586, 18109, 144873, 1303866, 13038670, 143425381, 1721104573, 22374359462, 313241032482, 4698615487245, 75177847795921, 1278023412530674, 23004421425552150, 437084007085490869, 8741680141709817381, 183575282975906165022
Offset: 0

Views

Author

Alois P. Heinz, May 12 2021

Keywords

Comments

This sequence is one of many possible solutions to puzzle 16 on the Meerdaelquiz puzzle page, cf. the Delestinne link and A090805.

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^signum(n mod 4) end: a(0):= 1:
    seq(a(n), n=0..23);

A368759 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = n! * (1 + Sum_{j=0..n} j^k/j!).

Original entry on oeis.org

2, 1, 3, 1, 2, 7, 1, 2, 6, 22, 1, 2, 8, 21, 89, 1, 2, 12, 33, 88, 446, 1, 2, 20, 63, 148, 445, 2677, 1, 2, 36, 141, 316, 765, 2676, 18740, 1, 2, 68, 351, 820, 1705, 4626, 18739, 149921, 1, 2, 132, 933, 2428, 4725, 10446, 32431, 149920, 1349290, 1, 2, 260, 2583, 7828, 15265, 29646, 73465, 259512, 1349289, 13492901
Offset: 0

Views

Author

Seiichi Manyama, Jan 04 2024

Keywords

Examples

			Square array begins:
     2,    1,    1,     1,     1,     1,      1, ...
     3,    2,    2,     2,     2,     2,      2, ...
     7,    6,    8,    12,    20,    36,     68, ...
    22,   21,   33,    63,   141,   351,    933, ...
    89,   88,  148,   316,   820,  2428,   7828, ...
   446,  445,  765,  1705,  4725, 15265,  54765, ...
  2677, 2676, 4626, 10446, 29646, 99366, 375246, ...
		

Crossrefs

Columns k=0..3 give A038159, A033540(n+1), A053817, A368760.
Cf. A337085.

Programs

  • PARI
    T(n, k) = n!*(1+sum(j=0, n, j^k/j!));

Formula

T(0,k) = 1 + 0^k and T(n,k) = n^k + n * T(n-1,k) for n>0.
T(n,k) = n! + A337085(n,k).
E.g.f. of column k: (1+ B_k(x) * exp(x)) / (1-x), where B_n(x) = Bell polynomials.

A348311 a(n) = n! * Sum_{k=1..n} (-1)^k * (k-2) / (k-1)!.

Original entry on oeis.org

0, 1, 2, 3, 20, 85, 534, 3703, 29672, 266985, 2669930, 29369131, 352429692, 4581585853, 64142202110, 962133031455, 15394128503504, 261700184559313, 4710603322067922, 89501463119290195, 1790029262385804260, 37590614510101889061, 826993519222241559782
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! Sum[(-1)^k (k - 2)/(k - 1)!, {k, 1, n}], {n, 0, 22}]
    nmax = 22; CoefficientList[Series[x (1 + x) Exp[-x]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    a(n) = n!*sum(k=1, n, (-1)^k * (k-2) / (k-1)!); \\ Michel Marcus, Oct 20 2021

Formula

E.g.f.: x * (1 + x) * exp(-x) / (1 - x).
a(0) = 0; a(n) = n * (a(n-1) + (-1)^n * (n-2)).
a(n) = n * (2 * A000166(n-1) + (-1)^n).
Showing 1-3 of 3 results.