cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A053819 a(n) = Sum_{k=1..n, gcd(n,k) = 1} k^3.

Original entry on oeis.org

1, 1, 9, 28, 100, 126, 441, 496, 1053, 1100, 3025, 1800, 6084, 4410, 7200, 8128, 18496, 8910, 29241, 16400, 29106, 27830, 64009, 27936, 77500, 54756, 88209, 67032, 164836, 52200, 216225, 130816, 185130, 161840, 264600, 140616, 443556
Offset: 1

Views

Author

N. J. A. Sloane, Apr 07 2000

Keywords

Comments

Except for a(2) = 1, a(n) is always divisible by n. - Jianing Song, Jul 13 2018

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 15, the function phi_3(n).

Crossrefs

Programs

  • Maple
    f:= proc(n) local F,t;
      F:= ifactors(n)[2];
      numtheory:-phi(n)*(n^3 + (-1)^nops(F)*mul(t[1],t=F)*n)/4
    end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Jan 29 2018
  • Mathematica
    Table[Sum[j^3, {j, Select[Range[n], GCD[n, #] == 1 &]}], {n, 1, 37}] (* Geoffrey Critzer, Mar 03 2015 *)
    a[1] = 1; a[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; (n^2/4) * (n * Times @@ ((p - 1)*p^(e - 1)) + Times @@ (1 - p))]; Array[a, 100] (* Amiram Eldar, Dec 03 2023 *)
  • PARI
    a(n) = sum(k=1,n, k^3*(gcd(n,k)==1)); \\ Michel Marcus, Mar 03 2015
    
  • PARI
    a(n) = {my(f = factor(n)); if(n == 1, 1, (n^2/4) * (n * eulerphi(f) + prod(i = 1, #f~, 1 - f[i, 1])));} \\ Amiram Eldar, Dec 03 2023

Formula

a(n) = n^2/4*(n*A000010(n) + A023900(n)), n > 1. - Vladeta Jovovic, Apr 17 2002
a(n) = eulerphi(n)*(n^3 + (-1)^omega(n)*rad(n)*n)/4. See Petridi link. - Michel Marcus, Jan 29 2017
G.f. A(x) satisfies: A(x) = x*(1 + 4*x + x^2)/(1 - x)^5 - Sum_{k>=2} k^3 * A(x^k). - Ilya Gutkovskiy, Mar 29 2020
Sum_{k=1..n} a(k) ~ 3 * n^5 / (10*Pi^2). - Amiram Eldar, Dec 03 2023