cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053918 Numbers k such that k^2 contains only digits {2,3,5}.

Original entry on oeis.org

5, 15, 235, 485, 1885, 5765, 15885, 50235, 57665, 72335, 1798765, 15249765, 187703365, 179876492415, 159789024443333515, 576387476638096486959455635
Offset: 1

Views

Author

Patrick De Geest, Mar 15 2000

Keywords

Crossrefs

Cf. A053919.

Programs

  • Python
    # see link for faster version
    def aupto(limit):
      alst = []
      for k in range(1, limit+1):
        if set(str(k*k)) <= set("235"): alst.append(k)
      return alst
    print(aupto(2*10**6)) # Michael S. Branicky, May 15 2021

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 03 2005
One more term from Mishima's webpage added by Max Alekseyev, Jun 17 2011
a(16) from Zhao Hui Du, Feb 29 2024

A119152 Triangular numbers composed of digits {2,3,5}.

Original entry on oeis.org

3, 55, 253, 325, 5253, 255255, 2235555, 2355535, 3252525, 222552253, 225323523253, 33533553332223253, 523355323323222253, 252235353552533225335, 22323332525535322225335, 223533355523232355353232325353525335
Offset: 1

Views

Author

Giovanni Resta, May 10 2006

Keywords

Comments

a(17) > 10^40. - Tyler Busby, Mar 28 2023

Crossrefs

Cf. A000217, A053919, A119153. See A119033 for a table of cross-references.

Formula

a(n) = A000217(A119153(n)). - Tyler Busby, Mar 28 2023

Extensions

a(16) from Tyler Busby, Mar 28 2023

A361821 Perfect powers in A329150.

Original entry on oeis.org

25, 27, 32, 225, 2025, 2197, 2500, 3025, 3375, 7225, 11025, 13225, 21952, 22500, 27000, 27225, 55225, 70225, 112225, 133225, 172225, 195112, 202500, 207025, 235225, 250000, 255025, 302500, 319225, 511225, 555025, 570025, 722500, 1102500, 1113025, 1177225, 1311025
Offset: 1

Views

Author

Bernard Schott, Mar 25 2023

Keywords

Comments

No term has a digit 4, 6 or 8.
Subsequences of squares are listed in Crossrefs.

Examples

			32 is a term since A329147(21) = 32 = 2^5.
2197 is a term since A329147(194) = 2197 = 13^3.
235225 is a term since A329147(123113) = 235225 = 485^2.
		

Crossrefs

Intersection of A001597 and A329150.
Cf. A329147.
Subsequences of squares with specified digits: A058426 (0,2,5), A053919 (2,3,5), A030485 (2,5,7), A191486 (2,3,5,7).

Programs

  • Mathematica
    p[n_] := If[n > 0, Prime[n], 0]; ppQ[n_] := GCD @@ FactorInteger[n][[;; , 2]] > 1; seq[ndigmax_] := Module[{t = Table[FromDigits[Flatten@ IntegerDigits@ (p /@ IntegerDigits[n])], {n, 0, 10^ndigmax - 1}]}, Union@ Select[t, 0 < # < 10^ndigmax && ppQ[#] &]]; seq[6] (* Amiram Eldar, Mar 26 2023 *)
  • PARI
    f(n) = if (n, fromdigits(concat(apply(d -> if (d, digits(prime(d)), [0]), digits(n)))), 0); \\ A329147
    lista(nn) = my(list = List(), m); for (n=0, nn, m = f(n); if ((m <= nn) && ispower(m), listput(list, m));); vecsort(Set(list)); \\ Michel Marcus, Mar 26 2023
Showing 1-3 of 3 results.