A053975
Squares composed of digits {6,8,9}.
Original entry on oeis.org
9, 6889, 69696, 698896, 9696996, 66699889, 9669968896, 669668898889, 686688996889, 989698666896, 86668968686689, 969896699696888896, 6869996688989986989889, 898889698869898988888689, 969986886696696688968996
Offset: 1
A379602
a(n) is the least n-digit number whose square contains only digits greater than 5.
Original entry on oeis.org
3, 26, 264, 3114, 25824, 260167, 2639867, 25845676, 260147437, 2582245083, 25843178924, 258241744863, 2582010592114, 25825761924437, 258218875510676, 2581990857627114, 25820083014911063, 258199298347206526, 2581988959445543367, 25819892911624938937, 258198891881411585714
Offset: 1
a(3) = 264 because among all 3-digit numbers, 264 is the smallest whose square 69696 contains only digits greater than 5.
-
f[m_] := For[k = Ceiling@Sqrt[100^m/15], k < 10^m - 1, k++, If[Min@IntegerDigits[k^2] > 5, Return[k];]]; Table[f[m], {m, 10}]
A379603
a(n) is the largest n-digit number whose square contains only digits greater than 5.
Original entry on oeis.org
3, 83, 937, 9833, 98336, 998333, 9994833, 99983333, 999939437, 9999833333, 99998333336, 999998333333, 9999983333336, 99999983333333, 999999833333336, 9999999833333333, 99999998333333336, 999999998333333333, 9999999983333333336, 99999999983333333333, 999999999833333333336
Offset: 1
a(3) = 937 because among all 3-digit numbers, 937 is the largest whose square 877969 contains only digits greater than 5.
-
f[m_] := For[k = 10^m - 1, k > 10^(m - 1), k--, If[Min@IntegerDigits[k^2] > 5, Return[k];]];
Table[f[m], {m, 10}]
Showing 1-3 of 3 results.
Comments