cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054009 n read modulo (number of proper divisors of n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 2, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 1, 2, 0, 3, 0, 2, 0, 2, 0, 1, 2, 4, 0, 2, 0, 5, 0, 0, 0, 4, 0, 1, 0, 3, 1, 0, 0, 2, 0, 5, 1, 0, 0, 1, 0, 5, 0, 2, 3, 4, 2, 3, 0, 3, 0, 0, 0, 6, 0, 2, 0, 1, 2, 1, 0, 8, 1, 1, 0, 7, 1, 2, 0, 4, 0, 2, 1, 2, 0, 1, 2, 8, 0, 3, 4, 4, 0, 4, 0, 6, 0, 1
Offset: 2

Views

Author

Asher Auel, Jan 12 2000

Keywords

Crossrefs

Programs

  • Maple
    [ seq( i mod (tau(i) - 1), i=2..150) ];
  • Mathematica
    Table[Mod[n,DivisorSigma[0,n]-1],{n,2,110}] (* Harvey P. Dale, Dec 05 2015 *)
  • PARI
    a(n) = n % (numdiv(n) - 1); \\ Michel Marcus, Nov 21 2019
    
  • Python
    from sympy import divisor_count
    def A054009(n): return n%(divisor_count(n)-1) # Chai Wah Wu, Mar 14 2023

Formula

a(n) = n mod (tau(n) - 1), for n>1.