A054009 n read modulo (number of proper divisors of n).
0, 0, 0, 0, 0, 0, 2, 1, 1, 0, 2, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 0, 3, 1, 2, 0, 3, 0, 2, 0, 2, 0, 1, 2, 4, 0, 2, 0, 5, 0, 0, 0, 4, 0, 1, 0, 3, 1, 0, 0, 2, 0, 5, 1, 0, 0, 1, 0, 5, 0, 2, 3, 4, 2, 3, 0, 3, 0, 0, 0, 6, 0, 2, 0, 1, 2, 1, 0, 8, 1, 1, 0, 7, 1, 2, 0, 4, 0, 2, 1, 2, 0, 1, 2, 8, 0, 3, 4, 4, 0, 4, 0, 6, 0, 1
Offset: 2
Keywords
Programs
-
Maple
[ seq( i mod (tau(i) - 1), i=2..150) ];
-
Mathematica
Table[Mod[n,DivisorSigma[0,n]-1],{n,2,110}] (* Harvey P. Dale, Dec 05 2015 *)
-
PARI
a(n) = n % (numdiv(n) - 1); \\ Michel Marcus, Nov 21 2019
-
Python
from sympy import divisor_count def A054009(n): return n%(divisor_count(n)-1) # Chai Wah Wu, Mar 14 2023
Formula
a(n) = n mod (tau(n) - 1), for n>1.