cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A054008 n read modulo (number of divisors of n).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 0, 0, 2, 1, 0, 1, 2, 3, 1, 1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 3, 4, 1, 6, 1, 2, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 1, 2, 3, 2, 1, 8, 1, 2, 3, 4, 1, 6, 3, 0, 1, 2, 1, 0, 1, 2, 3, 1, 1, 2, 1, 2, 1, 6, 1, 0, 1, 2, 3, 4, 1, 6, 1, 0, 1, 2, 1, 0, 1, 2, 3, 0, 1, 6, 3, 2, 1, 2, 3, 0, 1, 2, 3, 1, 1, 6, 1, 0, 1
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Comments

a(n)=0 iff n is a refactorable number (cf. A033950). - Franz Vrabec, Oct 16 2005
a(A066708(n)) = n and a(m) < n for m < A066708(n). - Reinhard Zumkeller, Sep 17 2014

Crossrefs

Programs

  • Haskell
    a054008 n = n `mod` a000005 n  -- Reinhard Zumkeller, Sep 17 2014
    
  • Maple
    [ seq( i mod tau(i), i=1..130) ];
  • Mathematica
    a[n_] := Mod[n, DivisorSigma[0, n]]; Array[a, 105] (* Jean-François Alcover, Sep 19 2017 *)
  • PARI
    a(n) = n % numdiv(n); \\ Michel Marcus, Sep 19 2017
    
  • Python
    from sympy import divisor_count
    def A054008(n): return n%divisor_count(n) # Chai Wah Wu, Mar 14 2023

Formula

a(n) = n mod tau(n).

A054010 Numbers n with property that n is divisible by the number of its proper divisors.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 11, 13, 15, 16, 17, 19, 20, 21, 23, 27, 29, 31, 33, 37, 39, 41, 42, 43, 45, 47, 50, 51, 53, 56, 57, 59, 61, 67, 69, 70, 71, 73, 75, 79, 83, 87, 89, 93, 97, 101, 103, 105, 107, 109, 111, 113, 120, 123, 127, 129, 131, 132, 137, 139, 141, 149, 151, 154
Offset: 1

Views

Author

Asher Auel, Jan 12 2000

Keywords

Comments

All primes are in this sequence, having only one proper divisor. The specifically nonprime members of this sequence are in A055719. - Carl R. White, Jul 11 2012

Examples

			There are three proper divisors of 6, {1, 2, 3}, 6 is divisible by 3.
		

Crossrefs

Programs

  • Maple
    [seq(`if`(i mod (tau(i)-1) = 0,i,print( )), i=2..190)];
  • Mathematica
    Select[Range[2, 100], IntegerQ[ #/(-1+DivisorSigma[0, # ])]&] (* Wouter Meeussen, Jun 07 2005 *)

Formula

Numbers n such that A054009(n) = 0.

A054011 n is not divisible by the number of its proper divisors.

Original entry on oeis.org

8, 9, 10, 12, 14, 18, 22, 24, 25, 26, 28, 30, 32, 34, 35, 36, 38, 40, 44, 46, 48, 49, 52, 54, 55, 58, 60, 62, 63, 64, 65, 66, 68, 72, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 90, 91, 92, 94, 95, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Asher Auel, Jan 17 2000

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): [seq(`if`(i mod (tau(i)-1) <> 0,i,print( )), i=2..190)];
  • Mathematica
    Select[Range[2, 120], ! Divisible[#, DivisorSigma[0, #] - 1] &] (* Amiram Eldar, Aug 28 2019 *)

A054012 Nonzero values of n read modulo (number of proper divisors of n).

Original entry on oeis.org

2, 1, 1, 2, 2, 3, 1, 3, 1, 2, 3, 2, 2, 1, 2, 4, 2, 5, 4, 1, 3, 1, 2, 5, 1, 1, 5, 2, 3, 4, 2, 3, 3, 6, 2, 1, 2, 1, 8, 1, 1, 7, 1, 2, 4, 2, 1, 2, 1, 2, 8, 3, 4, 4, 4, 6, 1, 9, 5, 4, 2, 1, 1, 2, 1, 2, 1, 2, 4, 2, 5, 2, 4, 1, 2, 2, 3, 5, 8, 1, 2, 4, 1, 2, 2, 3, 7, 5, 3, 2, 2, 2, 6, 2, 4, 4, 1, 3, 1, 2, 1, 2, 6, 5, 1
Offset: 1

Views

Author

Asher Auel, Jan 17 2000

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    [seq(`if`(i mod (tau(i)-1) <> 0,i mod (tau(i)-1),print( )), i=2..220)];
  • Mathematica
    Cases[Table[Mod[n,DivisorSigma[0,n]-1],{n,2,200}],Except[0]] (* Harvey P. Dale, Nov 12 2011 *)

Formula

a(n) = A054011(A054009(n)).
Showing 1-4 of 4 results.