cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054025 Sum of divisors of n read modulo (number of divisors of n).

Original entry on oeis.org

0, 1, 0, 1, 0, 0, 0, 3, 1, 2, 0, 4, 0, 0, 0, 1, 0, 3, 0, 0, 0, 0, 0, 4, 1, 2, 0, 2, 0, 0, 0, 3, 0, 2, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 3, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 2, 4, 2, 0, 0, 0, 6, 1, 2, 0, 8, 0, 0, 0, 4, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Asher Auel, Jan 19 2000

Keywords

Comments

a(A003601(n)) = 0; a(A049642(n)) > 0. [Reinhard Zumkeller, Jan 06 2012]

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a054025 n = genericIndex a054025_list (n-1)
    a054025_list = zipWith mod a000203_list a000005_list
    -- Reinhard Zumkeller, Jul 28 2014, Jan 06 2012
    
  • Maple
    with(numtheory): seq(sigma(i) mod tau(i),i=1..120);
  • Mathematica
    Table[Mod[DivisorSigma[1,n],DivisorSigma[0,n]],{n,110}] (* Harvey P. Dale, Nov 16 2011 *)
  • PARI
    vector(90, n, sigma(n) % numdiv(n)) \\ Michel Marcus, Aug 15 2015

Formula

a(n) = A000203(n) mod A000005(n), sigma(n) mod tau(n).