A054225 Triangle read by rows: row n (n>=0) gives the number of partitions of (n,0), (n-1,1), (n-2,2), ..., (0,n) respectively into sums of pairs.
1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 7, 9, 7, 5, 7, 12, 16, 16, 12, 7, 11, 19, 29, 31, 29, 19, 11, 15, 30, 47, 57, 57, 47, 30, 15, 22, 45, 77, 97, 109, 97, 77, 45, 22, 30, 67, 118, 162, 189, 189, 162, 118, 67, 30, 42, 97, 181, 257, 323, 339, 323, 257, 181, 97, 42, 56, 139, 267, 401, 522, 589, 589, 522, 401, 267, 139, 56
Offset: 0
Examples
The second row (n=1) is 1,1 since (1,0) and (0,1) each have a single partition. The third row (n=2) is 2, 2, 2 from (2,0) = (1,0)+(1,0), (1,1) = (1,0)+(0,1), (0,2) = (0,1)+(0,1). In the fourth row (n=3), T(2,1)=4 from (2,1) = (2,0)+(0,1) = (1,0)+(1,1) = (1,0)+(1,0)+(0,1). The triangle begins: 1; 1, 1; 2, 2, 2; 3, 4, 4, 3; 5, 7, 9, 7, 5; 7, 12, 16, 16, 12, 7; 11, 19, 29, 31, 29, 19, 11; 15, 30, 47, 57, 57, 47, 30, 15; 22, 45, 77, 97, 109, 97, 77, 45, 22; ... A further example: T(2,2) = 9: [(2,2)], [(2,1),(0,1)], [(2,0),(0,2)], [(2,0),(0,1),(0,1)], [(1,2),(1,0)], [(1,1),(1,1)], [(1,1),(1,0),(0,1)], [(1,0),(1,0),(0,2)], [(1,0),(1,0),(0,1),(0,1)].
References
- M. S. Cheema, Tables of partitions of Gaussian integers, National Institute of Sciences of India, New Delhi, 1956.
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
Links
- Alois P. Heinz, Rows n = 0..200, flattened
- Joerg Arndt, Multiset partitions of the multisets {1^r,2^s} for r+s=5.
- F. C. Auluck, On partitions of bipartite numbers, Proc. Cambridge Philos. Soc. 49, (1953). 72-83.
- F. C. Auluck, On partitions of bipartite numbers, annotated scan of a few pages.
- F. C. Auluck, On partitions of bipartite numbers, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 49, Issue 01, January 1953, pp. 72-83. (full article)
- P. A. MacMahon, Memoir on symmetric functions of the roots of systems of equations, Phil. Trans. Royal Soc. London, 181 (1890), 481-536; Coll. Papers II, 32-87.
- Reinhard Zumkeller, Haskell programs for A201376, A054225, A201377, A054242
Crossrefs
Programs
-
Haskell
see Zumkeller link.
-
Maple
read transforms; t1 := mul( mul( 1/(1-x^(i-j)*y^j), j=0..i), i=1..11): SERIES2(t1,x,y,6);
-
Mathematica
rows = 11; se = Series[ Product[ 1/(1-x^(n-k)*y^k), {n, 1, rows}, {k, 0, n}], {x, 0, rows}, {y, 0, rows}]; coes = CoefficientList[ se, {x, y}]; Flatten[ Table[ coes[[n-k+1, k]], {n, 1, rows+1}, {k, 1, n}]] (* Jean-François Alcover, Nov 21 2011, after g.f. *) p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; t[n_, k_] := b[p^(n-k)*q^k, p^(n-k)*q^k]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
-
PARI
{T(n, k) = if( n<0 || k<0, 0, polcoeff( polcoeff( prod( i=1, n, prod( j=0, i, 1 / (1 - x^i * y^j), 1 + x * O(x^n))),n),k))} /* Michael Somos, Apr 19 2005 */
Formula
G.f.: Product_{i>=1, j=0..i} 1/(1-x^(i-j)*y^j).
Series ends ... + 7*x^5 + 12*x^4*y + 16*x^3*y^2 + 16*x^2*y^3 + 12*x*y^4 + 7*y^5 + 5*x^4 + 7*x^3*y + 9*x^2*y^2 + 7*x*y^3 + 5*y^4 + 3*x^3 + 4*x^2*y + 4*x*y^2 + 3*y^3 + 2*x^2 + 2*x*y + 2*y^2 + x + y + 1.
Extensions
Entry revised by N. J. A. Sloane, Nov 30 2011, to incorporate corrections provided by Reinhard Zumkeller, who also contributed the alternative version A201376. Once the errors were corrected, this sequence coincided with A060243, due to N. J. A. Sloane, Mar 22 2001, which included edits by Vladeta Jovovic, Mar 23 2001, and Christian G. Bower, Jan 08 2004. The two entries have now been merged.
Comments