cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054339 9-fold convolution of A000302 (powers of 4).

Original entry on oeis.org

1, 36, 720, 10560, 126720, 1317888, 12300288, 105431040, 843448320, 6372720640, 45883588608, 317013884928, 2113425899520, 13655982735360, 85837605765120, 526470648692736, 3158823892156416, 18581317012684800, 107358720517734400, 610249569258700800
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2000

Keywords

Crossrefs

Programs

  • GAP
    List([0..20], n-> 4^n*Binomial(n+8, 8)); # G. C. Greubel, Jul 21 2019
  • Magma
    [Binomial(n+8, 8)*4^n: n in [0..20]]; // Vincenzo Librandi, May 31 2011
    
  • Maple
    seq(binomial(n+8,8)*4^n,n=0..20); # Zerinvary Lajos, Jun 23 2008
  • Mathematica
    Table[Binomial[n+8,8]4^n,{n,0,20}] (* or *) LinearRecurrence[ {36,-576,5376,-32256,129024,-344064,589824,-589824,262144},{1,36,720,10560,126720,1317888,12300288,105431040,843448320},20]
  • PARI
    vector(20, n, n--; 4^n*binomial(n+8, 8)) \\ G. C. Greubel, Jul 21 2019
    
  • Sage
    [4^n*binomial(n+8, 8) for n in (0..20)] # G. C. Greubel, Jul 21 2019
    

Formula

a(n) = binomial(n+8, 8)*4^n.
G.f.: 1/(1-4*x)^9.
a(n) = A054335(n+17, 17).
a(n) = 36*a(n-1) - 576*a(n-2) + 5376*a(n-3) - 32256*a(n-4) + 129024*a(n-5) - 344064*a(n-6) + 589824*a(n-7) - 589824*a(n-8) + 262144*a(n-9). - Harvey P. Dale, Aug 30 2013
E.g.f.: (16/7!)*(315 + 10080*x + 70560*x^2 + 188160*x^3 + 235200*x^4 + 150528*x^5 + 50176*x^6 + 8192*x^7 + 512*x^8)*exp(4*x). - G. C. Greubel, Jul 21 2019
From Amiram Eldar, Mar 27 2022: (Start)
Sum_{n>=0} 1/a(n) = 704696/35 - 69984*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 2500000*log(5/4) - 11715016/21. (End)