cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A054357 Number of unlabeled 2-ary cacti having n polygons. Also number of bicolored plane trees with n edges.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 28, 63, 190, 546, 1708, 5346, 17428, 57148, 191280, 646363, 2210670, 7626166, 26538292, 93013854, 328215300, 1165060668, 4158330416, 14915635378, 53746119972, 194477856100, 706437056648, 2575316704200, 9419571138368
Offset: 0

Views

Author

Keywords

Comments

a(n) = the number of inequivalent non-crossing partitions of n points (equally spaced) on a circle, under rotations of the circle. This may be considered the number of non-crossing partitions of n unlabeled points on a circle, so this sequence has the same relation to the Catalan numbers (A000108) as the number of partitions of an integer (A000041) has to the Bell numbers (A000110). - Len Smiley, Sep 06 2005

Crossrefs

Column k=2 of A303912.
Row sums of A209805.

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, (Binomial[2*n, n]/(n + 1) + DivisorSum[n, Binomial[2*#, #]*EulerPhi[n/#]*Boole[# < n] & ])/n]; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Jul 17 2017 *)
  • PARI
    a(n)=if(n==0, 1, (binomial(2*n, n)/(n + 1) + sumdiv(n, d, binomial(2*d, d)*eulerphi(n/d)*(dIndranil Ghosh, Jul 17 2017
    
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, eulerphi(n/d)*binomial(2*d, d))/n - binomial(2*n, n)/(n+1)) \\ Andrew Howroyd, May 02 2018
    
  • Python
    from sympy import binomial, divisors, totient
    def a(n): return 1 if n==0 else (binomial(2*n, n)//(n + 1) + sum(binomial(2*d, d)*totient(n//d)*(dIndranil Ghosh, Jul 17 2017

Formula

a(n) = (1/n)*(Sum_{d|n} phi(n/d)*binomial(2*d, d)) - binomial(2*n, n)/(n+1) for n > 0. - Andrew Howroyd, May 02 2018
a(n) ~ 2^(2*n) / (sqrt(Pi) * n^(5/2)). - Vaclav Kotesovec, Jul 17 2017

Extensions

More terms from Len Smiley, Sep 06 2005
More terms from Vladeta Jovovic, Oct 04 2007

A303913 Array read by antidiagonals: T(n,k) is the number of (planar) unlabeled asymmetric k-ary cacti having n polygons.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 3, 2, 0, 1, 1, 0, 6, 10, 8, 0, 1, 1, 0, 10, 28, 54, 18, 0, 1, 1, 0, 15, 60, 193, 222, 61, 0, 1, 1, 0, 21, 110, 505, 1140, 1107, 170, 0, 1, 1, 0, 28, 182, 1095, 3876, 7688, 5346, 538, 0, 1, 1, 0, 36, 280, 2093, 10326, 33125, 52364, 27399, 1654, 0
Offset: 0

Views

Author

Andrew Howroyd, May 02 2018

Keywords

Comments

A k-ary cactus is a planar k-gonal cactus with vertices on each polygon numbered 1..k counterclockwise with shared vertices having the same number. In total there are always exactly k ways to number a given cactus since all polygons are connected. See the reference for a precise definition. - Andrew Howroyd, Feb 18 2020

Examples

			Array begins:
===============================================================
n\k| 1   2     3      4       5        6        7         8
---+-----------------------------------------------------------
0  | 1   1     1      1       1        1        1         1 ...
1  | 1   1     1      1       1        1        1         1 ...
2  | 0   0     0      0       0        0        0         0 ...
3  | 0   1     3      6      10       15       21        28 ...
4  | 0   2    10     28      60      110      182       280 ...
5  | 0   8    54    193     505     1095     2093      3654 ...
6  | 0  18   222   1140    3876    10326    23394     47208 ...
7  | 0  61  1107   7688   33125   107056   285383    662620 ...
8  | 0 170  5346  52364  290700  1149126  3621150   9702008 ...
9  | 0 538 27399 373560 2661100 12845166 47813367 147765409 ...
...
		

Crossrefs

Columns k=2..7 are A054358, A054422, A052395, A054364, A054367, A054370.

Programs

  • Mathematica
    T[0, _] = 1;
    T[n_, k_] := DivisorSum[n, MoebiusMu[n/#] Binomial[k #, #] &]/n - (k-1) Binomial[n k, n]/((k-1) n + 1);
    Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, May 22 2018 *)
  • PARI
    T(n,k)={if(n==0, 1, sumdiv(n, d, moebius(n/d)*binomial(k*d, d))/n - (k-1)*binomial(k*n, n)/((k-1)*n+1))}

Formula

T(n,k) = (Sum_{d|n} mu(n/d)*binomial(k*d, d))/n - (k-1)*binomial(k*n, n)/((k-1)*n+1) for n > 0.
Showing 1-2 of 2 results.