cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054423 Number of unlabeled 3-gonal cacti having n triangles.

Original entry on oeis.org

1, 1, 1, 2, 7, 19, 86, 372, 1825, 9143, 47801, 254990, 1391302, 7713642, 43401974, 247216934, 1423531255, 8275108733, 48511773461, 286542497274, 1704002332513, 10195435737315, 61341136938138, 370933387552634, 2253475545208390, 13748639775492766, 84211761819147696
Offset: 0

Views

Author

Simon Plouffe, Mar 15 2000

Keywords

Comments

Also, the number of noncrossing partitions up to rotation composed of n blocks of size 3. - Andrew Howroyd, May 04 2018

Crossrefs

Column k=3 of A303694.

Programs

  • Maple
    with(combinat): with(numtheory): m := 3: for p from 1 to 40 do s1 := 0: s2 := 0:
    for d from 1 to p do if p mod d = 0 then s1 := s1+phi(p/d)*binomial(m*d,d) fi: od:
    for d from 1 to p-1 do if gcd(m, p-1) mod d = 0 then s2 := s2+phi(d)*binomial((p*m)/d, (p-1)/d) fi: od:
    printf(`%d,`, (s1+s2)/(m*p)-binomial(m*p,p)/(p*(m-1)+1)) od: # James Sellers, Mar 17 2000
  • Mathematica
    a[0] = 1;
    a[n_] := (DivisorSum[n, EulerPhi[n/#] Binomial[3 #, #]&] + DivisorSum[GCD[n - 1, 3], EulerPhi[#] Binomial[3n/#, (n-1)/#]&])/(3n) - Binomial[3n, n]/ (2n + 1);
    Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
  • PARI
    a(n) = {if(n==0, 1, (sumdiv(n, d, eulerphi(n/d)*binomial(3*d, d)) + sumdiv(gcd(n-1, 3), d, eulerphi(d)*binomial(3*n/d, (n-1)/d)))/(3*n) - binomial(3*n, n)/(2*n+1))} \\ Andrew Howroyd, May 04 2018

Formula

a(n) = ((Sum_{d|n} phi(n/d)*binomial(3*d, d)) + (Sum_{d|gcd(n-1, 3)} phi(d)*binomial(3*n/d, (n-1)/d)))/(3*n) - binomial(3*n, n)/(2*n+1) for n > 0. - Andrew Howroyd, May 04 2018
a(n) ~ 3^(3*n - 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 2)). - Vaclav Kotesovec, Jun 01 2022

Extensions

More terms from James Sellers, Mar 17 2000
Terms a(24) and beyond from Andrew Howroyd, May 04 2018