cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A303694 Array read by antidiagonals: T(n,k) is the number of noncrossing partitions up to rotation composed of n blocks of size k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 7, 6, 1, 1, 1, 1, 3, 11, 19, 14, 1, 1, 1, 1, 4, 17, 52, 86, 34, 1, 1, 1, 1, 4, 25, 102, 307, 372, 95, 1, 1, 1, 1, 5, 33, 187, 811, 1936, 1825, 280, 1, 1, 1, 1, 5, 43, 300, 1772, 6626, 13207, 9143, 854, 1
Offset: 0

Views

Author

Andrew Howroyd, Apr 28 2018

Keywords

Comments

Also, the number of unlabeled planar k-gonal cacti having n polygons.
The number of noncrossing partitions counted distinctly is given by A070914(n,k-1).

Examples

			Array begins:
==================================================================
n\k| 1   2    3     4      5       6       7        8        9
---+--------------------------------------------------------------
0  | 1   1    1     1      1       1       1        1        1 ...
1  | 1   1    1     1      1       1       1        1        1 ...
2  | 1   1    1     1      1       1       1        1        1 ...
3  | 1   2    2     3      3       4       4        5        5 ...
4  | 1   3    7    11     17      25      33       43       55 ...
5  | 1   6   19    52    102     187     300      463      663 ...
6  | 1  14   86   307    811    1772    3412     5993     9821 ...
7  | 1  34  372  1936   6626   17880   40770    82887   154079 ...
8  | 1  95 1825 13207  58385  191967  518043  1213879  2558305 ...
9  | 1 280 9143 93496 532251 2141232 6830545 18471584 44121134 ...
...
		

Crossrefs

Programs

  • Mathematica
    T[0, _] = 1;
    T[n_, k_] := (DivisorSum[n, EulerPhi[n/#] Binomial[k #, #]&] + DivisorSum[ GCD[n-1, k], EulerPhi[#] Binomial[n k/#, (n-1)/#]&])/(k n) - Binomial[k n, n]/(n (k-1) + 1);
    Table[T[n-k, k], {n, 0, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, May 22 2018 *)
  • PARI
    T(n,k)={if(n==0, 1, (sumdiv(n,d,eulerphi(n/d)*binomial(k*d,d)) + sumdiv(gcd(n-1,k), d, eulerphi(d)*binomial(n*k/d, (n-1)/d)))/(k*n) - binomial(k*n,n)/(n*(k-1)+1))}

Formula

T(n,k) = ((Sum_{d|n} phi(n/d)*binomial(k*d,d)) + (Sum_{d|gcd(n-1,k)} phi(d) * binomial(n*k/d, (n-1)/d)))/(k*n) - binomial(k*n,n)/(n*(k-1)+1) for n > 0.
T(n,k) ~ A070914(n,k-1)/(n*k) for fixed k > 1.

A052393 Number of unlabeled ternary cacti having n triangles.

Original entry on oeis.org

1, 1, 3, 6, 19, 57, 258, 1110, 5475, 27429, 143379, 764970, 4173906, 23140816, 130205922, 741650802, 4270593219, 24825326199, 145535320383, 859627488966, 5112006997539, 30586307211945, 184023410798910, 1112800162657902, 6760426635625170
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=3 of A303912.

Programs

  • Mathematica
    a[n_] := If[n == 0, 1, (Binomial[3*n, n]/(2*n+1) + DivisorSum[n, Binomial[ 3*#, #]*EulerPhi[n/#]*Boole[# < n]&])/n]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 17 2017 *)
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, eulerphi(n/d)*binomial(3*d, d))/n - 2*binomial(3*n, n)/(2*n+1)) \\ Andrew Howroyd, May 02 2018

Formula

a(n) = (1/n)*(Sum_{d|n} phi(n/d)*binomial(3*d, d)) - 2*binomial(3*n, n)/(2*n+1) for n > 0. - Andrew Howroyd, May 02 2018
a(n) ~ 3^(3*n + 1/2) / (sqrt(Pi) * 2^(2*n + 2) * n^(5/2)). - Vaclav Kotesovec, Jul 17 2017

Extensions

More terms from Jean-François Alcover, Jul 17 2017

A054422 Number of unlabeled asymmetric ternary cacti having n triangles.

Original entry on oeis.org

1, 1, 0, 3, 10, 54, 222, 1107, 5346, 27399, 142770, 764967, 4170672, 23140813, 130189302, 741650172, 4270501218, 24825326196, 145534796520, 859627488963, 5112003992610, 30586307195304, 184023393204654, 1112800162657899
Offset: 0

Views

Author

Simon Plouffe, Mar 15 2000

Keywords

Crossrefs

Column k=3 of A303913.

Programs

  • Mathematica
    a[0] = 1; a[n_] := (1/n) Sum[MoebiusMu[n/d] Binomial[3d, d], {d, Divisors[n] } ] - 2 Binomial[3n, n]/(2n + 1);
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jul 24 2018, after Andrew Howroyd *)
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, moebius(n/d)*binomial(3*d, d))/n - 2*binomial(3*n, n)/(2*n+1)) \\ Andrew Howroyd, May 02 2018

Formula

a(n) = (1/n)*(Sum_{d|n} mu(n/d)*binomial(3*d, d)) - 2*binomial(3*n, n)/(2*n+1) for n > 0. - Andrew Howroyd, May 02 2018

Extensions

More terms from James Sellers, Mar 16 2000

A082938 Number of solid 2-trees with 2n+1 edges.

Original entry on oeis.org

1, 1, 1, 2, 5, 13, 49, 201, 940, 4643, 24037, 127859, 696365, 3858759, 21704863, 123619126, 711787259, 4137614454, 24256010068, 143271593982, 852001881614, 5097719884665, 30670572676389, 185466705697057
Offset: 0

Views

Author

N. J. A. Sloane, May 26 2003

Keywords

Comments

Also, the number of noncrossing partitions up to rotation and reflection composed of n blocks of size 3. - Andrew Howroyd, May 03 2018

Crossrefs

Column k=3 of A303929.

Programs

  • Mathematica
    u[n_, k_, r_] := (r*Binomial[k*n + r, n]/(k*n + r));
    e[n_, k_] := Sum[ u[j, k, 1 + (n - 2*j)*k/2], {j, 0, n/2}]
    c[n_, k_] := If[n == 0, 1, (DivisorSum[n, EulerPhi[n/#]*Binomial[k*#, #] &] + DivisorSum[GCD[n-1, k], EulerPhi[#]*Binomial[n*k/#, (n-1)/#] &])/(k*n) - Binomial[k*n, n]/(n*(k - 1) + 1)];
    T[n_, k_] := (1/2)*(c[n, k] + If[n == 0, 1, If[OddQ[k], If[OddQ[n], 2*u[ Quotient[n, 2], k, (k + 1)/2], u[n/2, k, 1] + u[n/2 - 1, k, k]], e[n, k] + If[OddQ[n], u[Quotient[n, 2], k, k/2]]]/2]) /. Null -> 0;
    a[n_] := T[n, 3];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 14 2018, after Andrew Howroyd and A303929 *)

Formula

a(n) = (A047749(n)+A054423(n))/2. - Vladeta Jovovic, Sep 11 2004
a(n) ~ 3^(3*n - 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 3)). - Vaclav Kotesovec, Jun 01 2022

Extensions

More terms from Vladeta Jovovic, Sep 11 2004
Showing 1-4 of 4 results.