cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A054444 Even-indexed terms of A001629(n), n >= 2, (Fibonacci convolution).

Original entry on oeis.org

1, 5, 20, 71, 235, 744, 2285, 6865, 20284, 59155, 170711, 488400, 1387225, 3916061, 10996580, 30737759, 85573315, 237387960, 656451269, 1810142185, 4978643596, 13661617195, 37409025455, 102238082976, 278920277425, 759695287349
Offset: 0

Views

Author

Wolfdieter Lang, Apr 07 2000

Keywords

Comments

8*a(n) is the number of Boolean (equivalently, lattice, modular lattice, distributive lattice) intervals of the form [s,w] in the Bruhat order on S_n, where s is a simple reflection. - Bridget Tenner, Jan 16 2020

Crossrefs

Programs

  • PARI
    a(n) = ((2*n+1)*fibonacci(2*(n+1))+4*(n+1)*fibonacci(2*n+1))/5; \\ Jinyuan Wang, Jul 28 2019

Formula

a(n) = ((2*n+1)*F(2*(n+1)) + 4*(n+1)*F(2*n+1))/5, with F(n) = A000045(n) (Fibonacci numbers).
a(n) = A060920(n+1, 1).
G.f.: (1 - x + x^2)/(1 - 3*x + x^2)^2.
a(n) = Sum_{k=1..n+1} k*binomial(2*n-2*k+2, k). - Emeric Deutsch, Jun 11 2003
a(n) ~ n*(3 + sqrt(5))^(1+n)*2^(-n)/5. - Stefano Spezia, Mar 29 2022
E.g.f.: exp(3*x/2)*(5*(5 + 14*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(7 + 30*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Mar 04 2025